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Abstract
Top tree is a powerful data structure for maintaining dynamic trees. It can solve

problems on trees dealing with properties based on vertices, edges and paths. It

solves a variety of problems for trees including aggregating information, nearest

marked vertex, maintaining center and diameter, subject to dynamic updates in the

tree as edge insertion and deletion. We present two results, each of which is an

application of top trees on planar graphs.

In the first result we make a structure similar to top trees for planar graphs hav-

ing n vertices, that can solve the problems dealing with properties based on vertices,

edges and faces of a planar graph. It allows the user to expose the graph on a cycle

or cut such that the data structure represents the subgraph enclosed by the cycle

or cut. This structure is then used to solve two problems. The first application is

aggregating information (Minimum, maximum or sum) on elements(vertices, edges

or faces) of planar graph, with online queries and additive weight updates on the

elements of a subgraph, enclosed by a cycle or cut on the graph. The second ap-

plication is maintaining dynamic Minimum Spanning Tree of a planar graph, which

allows online updates on edge weights and query of MST on a subgraph enclosed by

a cut on the graph. Trivially both the applications takes O(n) time to be solved,

whereas using our structure it can be solved in O(dlogn) time where d is the length

of cycle or cut mentioned above.

The second result deals with nearest marked vertex problem for planar graphs.

Marked ancestor problem for trees is an extensively studied problem and finds ap-

plication is solving many other theoretical problems. Nearest Marked Vertex prob-

lem is a variant of Shortest Path problem which deals with dynamically mark-

ing/unmarking any vertex and querying the nearest marked vertex of any given

vertex in an online fashion. The problem can be extended to find the k nearest

marked vertices for a given vertex. We present a solution to solve the problem in

O(
√
nlogn) time for both update and query. There is currently no efficient solution

for the problem in planar graphs, for general graphs similar bounds are used to

provide a 3 approximate solution for the problem.
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Chapter 1

Introduction

Top tree is a powerful data structure for maintaining dynamic trees. It can solve

problems on trees dealing with properties based on vertices, edges and paths. It

solves a variety of problems for trees including aggregating information, nearest

marked vertex, maintaining center and diameter, subject to dynamic updates in the

tree as edge insertion and deletion.

In the first problem we have tried to develop a structure similar to top trees for

planar graphs. It solve two problems namely aggregating information of elements

of a planar graph and maintaining dynamic MST for subgraphs of a planar graph.

Second problem deals with reporting nearest marked vertex for any vertex of a

planar graph where updates and queries are performed in an online fashion.

1.1 Problems Solved

1.1.1 Top tree for Planar Graphs

The main aim was to develop a data structure similar to Top trees, for planar

graphs that addresses problems related to properties of edges, vertices and faces.

Our solution introduces a data structure Dtt similar to top trees for planar graphs.

Technically Dtt is easily implementable using top trees, the main contribution of

Dtt is the design of the interface, providing user an easier access to advanced

techniques using top trees to solve problems on planar graphs. We use the phrase

subgraph enclosed by a cycle or cut, which refers the subgraph of the planar graph

that is either internal or external to the cycle (or cut). We introduce the notion of

exposing the planar graph on a subgraph enclosed by a cycle or cut. On an exposed

Dtt the data will only account for the subgraph that is internal or external to the

cycle(or cut) in the primal graph.

For a given embedded planar graph G having n vertices, we make a data struc-

ture Dtt in O(n) time and using O(n) space. It can update the weights of an

element(vertex,edge or face) in O(logn) time. The Access and Query operations

1
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are performed in O(1) time. Expose operation called on a subgraph, enclosed by

a cycle or cut of size d is performed in O(dlogn) time. Since the size of input for

Expose is d, we cannot expect to perform better than Ω(d). Also expose operation

in top trees require O(logn) time per boundary vertex to perform expose on a given

cluster path. Expose operation of Dtt also uses O(logn) time per edge on the cycle

or cut to perform expose justifying the bounds achieved in the implementation of

Dtt.

The first problem solved using Dtt is aggregating information (Minimum, max-

imum or sum) on elements(vertices, edges or faces) of planar graph G having n

vertices, with queries and additive weight updates on the elements of a subgraph,

enclosed by a cycle (or cut) including or excluding the external cycle(or cut). The

queries and updates are performed in an online fashion. The solution takes O(dlogn)

time for performing expose and O(logn) time to perform query and update opera-

tions where d is the length of the input cycle(or cut). Trivial solutions for the same

problem uses O(n) time per update or query operation.

The second problem solved using Dtt is maintaining dynamic Minimum Spanning

Tree(referred as MST) of a planar graph G having n vertices, which allows online

updates on edge weights and query of MST of a subgraph enclosed by a cut on G.

The solution takes O(dlogn) time for performing query of MST on a subgraph and

O(logn) time to perform query and update operations where d is the length of the

input cut. Trivial solutions for the same problem uses O(nlogn) time per update or

query operation.

1.1.2 Nearest Marked Vertex in Planar Graphs

Nearest Marked Vertex problem is a variant of Shortest Path problem which deals

with dynamically marking/unmarking any vertex and querying the nearest marked

vertex of any given vertex in an online fashion. The problem defines two update

operations namely mark and unmark, and a query operation for querying nearest

marked vertex.

Marked ancestor problem for trees is an extensively studied problem and finds

application in solving many other theoretical problems[5]. The problem is then

extended to Nearest marked vertex problem in trees and solved by Alstrup et. al

[1] using top trees. It supports dynamic link and cuts, performing all operations in

O(logn) time. They also gave a solution for Nearest marked for a fixed undirected

graph on n vertices and m edges. They present a 2k − 1 approximate solution

using O(kn1+1/k) space data structure built in O(kmn1/klogn) expected time for any

positive integer parameter k, supporting both queries and updates in O(kn1/klogn)

time.

Given an embedded planar graph G having n vertices with infinite face f∞ having

d vertices, our aim is to be able to dynamically mark and unmark vertices such
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that for any vertex v ∈ f∞ we can query the nearest marked vertex in an online

fashion. The problem can be extended to find the k nearest marked vertices for a

given vertex. We define a parameter S ∈ [1, d], such that our algorithm performs

the update operations in O(Slogn) time and query in O(nlogn/S) time using O(nS)

space. Also it supports k queries in O((n/S+k)logn) time. The balanced solution in

terms of equal bounds for updates and queries is obtained taking S as
√
n resulting

in both updates and query to be done in O(
√
nlogn) time using O(n

√
n) space.

Using same bound the solution by Alstrup et. al[1] for general graphs, gives 3

approximation of the solution. Also our initial approaches to solve the problem on

planar graphs performs either update or query in O(1) time, taking atleast O(dlogn)

time to solve the other operation. We can match bounds of both these solutions

at the extreme values of our parameter S. Hence the bounds achieved for our final

solution are competitive with the state of the art and direct approaches to solve the

problem.

1.2 Organisation of thesis

In Chapter 2, we discuss about the various topics required to develop a better un-

derstanding of the problems solved in the thesis. We describe Planar graphs and

its important properties that were used to formulate the solutions of the aforemen-

tioned problems. Also the interface and applications of top trees are discussed to

give an insight of how top trees are used to solve problems. Further some important

results related to the MSSP algorithm by Klien[3] are discussed.

In Chapter 3, we describe the solution of the first problem. We describe a top

tree like structure for planar graphs, along with its structure, implementation and

application for aggregating information on planar graph. We also state its limitation

and are areas of future work.

In Chapter 4, we describe a solution for nearest marked vertex problem in planar

graphs using top trees. We describe a data structure to support the related queries

and updates in an online fashion. We extend the solution to find k nearest marked

vertices of a vertex on a planar graph. We further describe its limitations and scope

for future work.



Chapter 2

Background and Related Work

2.1 Dynamic Graph Algorithms

Dynamic graph problems deals with a sequence of queries and updates on a given

graph in an online fashion. The updates can be in the form of edge insertions and

deletions. Each query has to be answered based on current state of the graph. Trivial

approach can be to recompute the solution from scratch using an algorithm for the

static version of the problem, after every update on the tree. Dynamic algorithms

answer such queries efficiently. Based on the types of updates handled the dynamic

graph algorithms are classified as:

1. Incremental Algorithms: These support only edge insertions.

2. Decremental Algorithms: These support only edge deletions.

3. Fully dynamic Algorithms: These support both edge insertions and deletions.

2.2 Planar Graphs

Graphs for which a planar embedding exists, i.e. it can be embedded such that no

two edges cross each other, are called Planar Graphs. They have some interesting

properties that are exploited to make better solutions for planar graphs. For ex-

ample, considering the problem of Single Source Shortest paths in graphs having

negative edge weights. The best known algorithm for general graph is Bellman Ford

algorithm, that takes O(mn) time. However, for planar graphs the best known al-

gorithm is by Klien[18] which takes O(nlog2n) time. Some of these properties are

exploited by us to frame our solutions namely Sparsity property and the existence

of Interdigitating trees.

4
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Figure 2.1: The figure shows the primal and dual graphs. (a) Shows the primal
graph, (b) Shows the dual graph made using faces of primal graph as vertices, (c)
Shows the dual graph.

2.2.1 Sparsity Property

The property is based on the following lemma.

Lemma 2.2.1. Any simple connected planar graph G with n vertices has at most

3n− 6 edges.

Hence, for all planar graphs, the number of edges m is O(n) and hence it is

sparse, whereas for general graphs in the worst case m is of O(n2) making them

dense. Importance of this property can be judged by the fact that most algorithms

as DFS and BFS, whose complexity is directly affected by the number of edges now

perform in linear time.

2.2.2 Planarity of Dual graph

Given a graph G = (V,E), the dual graph G∗ = (V ∗, E∗) is defined as follows. Each

vertex in V ∗ corresponds to a face in G. Also for The dual graph G∗ for a planar

graph G has a vertex set V ∗ that corresponds to the faces of G. The original graph

G is also called as Primal Graph. Since each edge in a planar graph G is adjacent to

exactly two faces, it is used to connect the corresponding vertices in the dual graph

G∗. Note that even though the planar graph may be simple but its dual graph

may have multi-edges and self loops as two faces can share more than one edge in a

planar graph as shown in Figure 3.2. Further note that each face of the dual graph

G∗ also corresponds to a vertex of the primal graph G. Hence, the dual of G∗ is G.

Another interesting feature of the dual graph is that it is also planar. Many

algorithms have exploited this property to solve problems that could not be directly

solved by exploiting the planarity of primal graph.
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Figure 2.2: The figure shows the interdigitating trees. (a)Shows the primal
graph (using black edges) and corresponding dual graph (using dotted blue edges).
(b)Shows the spanning tree on primal graph (using bold red edges) and that of dual
graph (using complete blue edges).

2.2.3 Existence of Interdigitating Trees

Any spanning tree of a planar graph selects n− 1 edges of the graph. According to

Euler’s formula where V represents the set of vertices, F represents the set of faces

and E represents the set of edges of a planar graph the following identity holds

| V | + | F | −2 =| E | (2.1)

It can also be written as

(| V | −1) + (| F | −1) =| E | (2.2)

Since | V | −1 edges are used to make the spanning tree of the primal graph,

exactly F − 1 edges are left. The beautiful aspect of this is the fact, that these

remaining | F | −1 edges make the spanning tree of the dual graph as shown in

Figure 2.2. Hence, these pairs of spanning trees also span all the edges of the planar

graph and are called Interdigitating trees. This property is used to make efficient

dynamic algorithms for dynamic problems in planar graphs as Maintaining dynamic

Minimum Spanning Tree[17].

2.3 Top Trees

Dynamic data structures are developed so as to perform updates and answer queries

in an online fashion. In fully dynamic trees, updates may include edge insertions,

deletions or modifying weights on edges or vertices etc. Dynamic trees can be based

on path decomposition, tree contraction or balancing euler tours. Path decomposi-

tion was first used by Sleator and Tarjan[6] to make ST Trees. Its implementation
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was later simplified by them using splay trees[7]. Miller and Reif[8] introduced tree

contraction and the contraction moves Rake and Compress. It was later simplified

and modelled as RC Trees by Acar et al.[9, 10]. Tree contraction was also used by

Fredrickson [11, 12, 13] to build topology trees having a limitation on the degree of

vertices to be at most three. A balanced binary tree on euler tours was first used

by Henzinger and King[14, 15] to make ET Trees, which was later simplified by

Tarjan[16]. However ET Trees con not handle path related problems.

Top tree is a tree contraction based dynamic tree that is known to be the most

powerful in terms of number of operations required, problems it solves and easy

interface it provides. Top trees address problems that use information of the edges,

vertices and paths. It can be used to answer any problem specific queries as min-

imum weight of an edge on a path, diameter of the tree, sum of edges on a tree,

etc. Top trees were introduced by Alstrup et al.[1] and its implementation was later

simplified by Tarjan and Werneck[2]. We shall describe the interface of top tree

(i.e. various operations it allows) and describe some of its applications based on the

works of Alstrup et. al[1] and Werneck [2]. However, details of implementation are

not covered here.

2.3.1 Structure of top tree

In a forest each tree is represented by a Top tree, which is a binary tree of clusters.

Each cluster represents a tree or a part of tree. Each cluster has two boundary

vertices. The unique path connecting the boundary vertices is called the cluster

path. The boundary vertices and the cluster path of a cluster are said to be exposed

by the cluster. A cluster C can be of three types with the following properties:

1. Base Clusters: Each base cluster represents an edge of the tree and appears

as a leaf of the top tree. The two vertices of the corresponding edge are called

as boundary vertices.

2. Internal Clusters: Each internal cluster C represents a subtree of the whole

tree. It has two children A and B, which may be base clusters or internal

clusters having exactly one common boundary vertex. The subtree represented

by C is formed by combining the subtrees represented by its children at the

common boundary vertex. It has two vertices x and y called as boundary

vertices and the path Pxy connecting x and y is called the cluster path.

3. Root Clusters: Each root cluster is an internal cluster without a parent. It

represents a whole tree in the forest that is represented by the corresponding

top tree.
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Figure 2.3: The figure shows the structure of top trees. (a) Shows the representation
of tree on each level, (b) Shows the top tree made showing base clusters (trapezium),
rake(rectangle) and compress (circle) clusters.

Hence, in a forest F represented by a set of top trees TT , each top tree is a

binary tree of clusters. It is formed by performing tree contractions at on the tree

reducing the tree at each level as shown in Figure 2.3. The root of TT is a root

cluster, with the leaves being the base clusters. Every non-base cluster is formed by

the combination of two clusters by tree contraction. Two tree contraction moves are

allowed namely compress and rake, as shown in Figure 2.4. The original clusters

before they were contracted are shown in Figure 2.4(a). The new cluster formed

after contraction is shown in Figure 2.4(b), and the part of the cluster that is exposed

is shown in Figure 2.4(c). Contraction moves are described as follows:

1. Compress: The two clusters with cluster paths xy and yz (refer to Figure

2.4) are compressed such that new cluster path is xz and common vertex y is

no longer exposed. In order to perform this operation the degree of y should

be two.

2. Rake: The two clusters A and B with cluster paths xy and yz (refer to

Figure 2.4) are contracted using rake (called yz raked on xy) such that new

cluster path is xy and the vertex z is no longer exposed. A is called the target

and B is called the source. In order to perform this operation the degree of z

should be one.

In each level of top tree some fraction of clusters are contracted. The clusters

that were not contracted are made available to the higher level acting as the cluster

of both the levels. It is ensured in the implementation of Top trees that at least a

constant fraction of clusters are contracted at each level, such that the height of top

tree becomes O(logn) as the number of base clusters are n− 1.
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Figure 2.4: Tree contraction moves showing Compress and Rake on left and right.

2.3.2 Interface of top tree

The user is allowed to store some additional data D on each cluster. There are

some operations defined on top trees called external operations that can be used to

formulate solution of any problem. These are respectively

1. Link(u,v): It adds the edge (u, v) to the forest and connects two trees. It is

added only if u and v belong to different trees.

2. Cut(u,v): It removes the edge (u, v) from the forest and divides a tree into

two trees. An edge is deleted only if it originally exists in the forest.

3. Expose(u,v): It modifies the top tree such that the root cluster of the top

tree consisting of u and v exposes the path uv as its cluster path. It is modified

only if u and v are connected.

4. Access(v): It allows the user to access the data D associated with the root

cluster of the top tree containing vertex v.

The first three external operations Link,Cut and Expose are update operations

and they change the structure of the top tree. During Access operation no change

is made to the structure of top tree, however the data D in the root cluster can

be modified by the user. Each of these external operations are performed using a

series of internal operations. These operations are not directly accessible to the user,

however a user needs to define how the data D of the clusters involved is modified

by each of these operations. The four internal operations are described as follows:

1. Create(e): It creates a new base cluster A on edge e.

2. Join(A,B): It creates a new cluster C which is formed by the contraction of

clusters A and B.

3. Split(C): It splits an internal cluster C into its child clusters A and B.

4. Destroy(A): It destroys the base cluster A.
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The modifications to the top trees during update operations are performed in a

particular fashion which decides the order of execution of the internal operations.

Firstly, Splits are performed in a top down fashion for all the clusters that are to

be changed. Then Destroy operation is called if an edge is deleted. It is followed

by any updates performed on the original forest. Now new base clusters are created

using Create. Finally, a series of Join operations are used to build the top tree in

bottom up fashion.

It has been proved by Alstrup et. al[1] and Werneck [2] that each external

operation can perform at most O(logn) Join and Split operations and O(1) Create

and Destroy operations. Hence, if the updates on data D in each internal operation

takes constant time, all the external operations can be performed in O(logn) time.

In the original paper [1, 2], another operation Select was described to extend top

tree and solve problems involving non-local properties. However, it is not relevant

to our work, so it is not described here.

2.3.3 Applications

Each cluster is associated with some problem specific data D. This data is ma-

nipulated by each of the internal operations. Hence, for describing the algorithm

external operations are used and for describing the data manipulation internal op-

erations are used. Following are a few applications of top trees that shall be used in

some sections of the thesis report.

Aggregating Information

The problem involves finding the aggregate (minimum, maximum, sum etc.) of

information stored on each element (edge or vertex) in a tree, subtree or a path of the

tree subject to dynamic updates of Link and Cut and weight increment/decrement

over a path or subtree in an online fashion. First the solution is explained for

maintaining minimum weighted edge with weight updates to be performed on a

path and later the solution is generalised for other problems.

In each cluster C the data D stored comprises of two data values. Local minimum

xmin stores the weight of the minimum weighted edge on the cluster path. Lazy

update xupd stores the value to be incremented to weight of each edge on the cluster

path. However, the weight xmin is updated according to xupd.

For base cluster xmin is initialised by the weight of the edge and xupd is initialised

to zero. Consider two clusters A and B having cluster paths xy and yz are children

of the cluster C. When a Join is performed xupd(C) is initialised to zero and the

value of xmin(C) is initialised as

1. For compress resulting in cluster path of C to be xz

xmin(C) = min(xmin(A), xmin(B))
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2. For rake resulting in cluster path of C to be xy

xmin(C) = xmin(A)

Also when split is performed the value of xmin and xupd is updated for both A

and B as

1. For compress resulting in cluster path of C to be xz

xupd(A) = xupd(A) + xupd(C)

xmin(A) = xmin(A) + xupd(C)

xupd(B) = xupd(B) + xupd(C)

xmin(B) = xmin(B) + xupd(C)

2. For rake resulting in cluster path of C to be xy

xupd(A) = xupd(A) + xupd(C)

xmin(A) = xmin(A) + xupd(C)

To find the minimum weight edge on a path, the top tree is simply exposed on

that path and query is performed on xmin. Again to add some weight on each edge

on a path, the weight increment is added to xupd after exposing the path. Updates

of edge insertion and deletion are simply performed using Link and Cut.

Other operations like Maximum and Sum can be handled similarly. For prob-

lems where query and modifications are done on the subtrees rather than paths,

Cut is performed to make the subtree independent. Now query and data updates

can be performed on the root cluster. The removed edge is added back using Link

operation to restore the tree.

Since base clusters of top trees are made on edges, it is easier to handle queries

on edges. For handling vertices two approaches can be used. In the first approach,

for each vertex a dummy edge can be introduced that stores the weight of the vertex,

and weight of every other edge is identity element of aggregating operation, as zero

for sum, and∞ for minimum. In the second approach weights on vertices are stored

in some external array. The weight of a vertex is accounted in a the data of a cluster

if it is not exposed by the cluster. Since a vertex can be an internal vertex of at

most one cluster no vertex is accounted for more than once. Hence, while performing

Join only the weight of vertex which no longer remains exposed is accounted.

2.3.4 Nearest Marked Vertex

The problem involves dynamically marking and unmarking any vertex on the tree

and querying for the nearest marked vertex for any vertex in an online fashion

subject to Link, cut updates in the tree.

For each boundary vertex in a cluster, we store its nearest marked vertex vnmv

in the subtree associated with the cluster. However, to find vnmv for each boundary

vertex, we do not consider any boundary vertices of the cluster. Also the distance of
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the nearest marked vertex is stored in dnmv. Further the length of the cluster path

is also maintained in dcp.

For each boundary vertex of each base cluster, vnmv is initialised with NULL

and dnmv is initialised with ∞. Also dcp for every base cluster is initialised with the

weight of the edge corresponding to the base cluster. Now, when Join operation is

called on clusters A and B with cluster paths xy and yz, it initialises the value of

data D for new cluster C as follows.

1. For compress operation forming C with cluster path xz

dcp(C) = dcp(A) + dcp(B)

dnmv(C, x) = min(dnmv(A, x), dnmv(B, y) + dcp(A), dcp(A))

dnmv(C, z) = min(dnmv(B, z), dnmv(A, y) + dcp(B), dcp(B))

The last argument of dnmv(C, x) and dnmv(C, z) is considered only if y is

marked.

2. For rake with A as target and cluster path or C as xy

dcp(C) = dcp(A)

dnmv(C, x) = min(dnmv(A, x), dnmv(B, y) + dcp(A), dcp(A) + dcp(B))

dnmv(C, y) = min(dnmv(A, y), dnmv(B, y), dcp(B))

The last argument of dnmv(C, x) and dnmv(C, y) is considered only if z is

marked.

Also vnmv(x) and vnmv(z) (or vnmv(y) for rake) is initialised accordingly.

For marking or unmarking a vertex x, the tree is exposed to the path xk for

any vertex k. Now the marked status of x can be changed without creating any

inconsistency in the underlying top tree as boundary vertex is not accounted for in

the data stored.

2.4 Multiple Source Shortest Path in Planar Graphs

Given a planar graph G, having n vertices and m edges with non-negative edge

lengths, a data structure is built to report the shortest path between any two vertices

on the planar graph.

This section is based on solution for Multiple Source Shortest Path problem(referred

as MSSP) given by Klien [3] and the extension to genus g graphs by Cabello [4].

This algorithms finds shortest path trees on all vertices of the infinite face in a pla-

nar graph. It starts off with making the shortest path tree for one of the vertex v,

and modifies the tree to represent the shortest path tree of the successor of v on the

infinite face and so on. The main idea here is that while making these shortest path

trees on all the vertices of the infinite face we need to make only O(m) edge changes
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Figure 2.5: Shortest path from v1 and v3 to y has arc xy shown in blue, then shortest
path of atleast one of v2 or v4 should pass through them shown in red,

to the tree. For undirected graph we assume each undirected edge comprises of two

directed edges (referred as arcs) of opposite directions.

The main idea behind this approach is that an arc can exist in the shortest path

tree of a continuous set of vertices on infinite face f∞. The result can be proved

using the following lemma by Klien[3].

Lemma 2.4.1. Given a planar embedded graph G with infinite face f∞ on which

vertices v1, v2, v3 and v4 occur in order. A directed edge e that is present in shortest

path tree on v1 and v3, must be present in the shortest path tree of at least one of v2

or v4.

Proof. Consider figure 2.5, the shortest paths from v1 and v3 to y consists of the

shown arc xy. Suppose that all shortest paths (in case more than one have the same

weight) from v2 and v4 to y are such that none of them contains edge xy. Now

because of planarity at least one of shortest paths from v2 and v4 to y must intersect

the path from v1 or v2 to y. Without loss of generality consider it to be the path

from v2 intersecting at z.

Now, the path from z to y excluding xy cannot be shorter than the one including

it otherwise v3 can be connected to y using a shorter path following the path that

excludes xy after z. Hence, we can use the same path to connect v2 to y. So it is

a contradiction to our earlier assumption hence there exist shortest path tree that

contains e for at least one of v2 or v4.

Lemma 2.4.1 can now be used to prove the lemma by Klien[3].

Lemma 2.4.2. Given a planar embedded graph G with infinite face f∞ on which

shortest path trees are made on each vertex. A directed edge e is present in shortest

path trees of a contiguous subset of these vertices around the cycle.

Proof. Again we give the proof by contradiction. Suppose there exist at least two

disconnected subset of vertices around f∞ which use and arc e. So we can choose v1

and v3 from these two subsets and v2 and v4 from the vertices of the set preceding
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and succeeding the set containing v3. Hence, the vertices v1, v2, v3 and v4 are in

order. So we can apply Lemma 2.4.1 to prove that our assumption is wrong. Hence,

each arc e exist in the shortest path trees of a continuous subset of the vertices

around f∞.

We can now bound the number of edge changes when we make shortest path

tree on each vertex of f∞ in order from the preceding vertex.

Lemma 2.4.3. (Limited Edge Changes) Given a planar embedded graph G having

m directed edges with infinite face f∞ on which shortest path trees are made on each

vertex. When moving around the f∞ making shortest path tree of the vertex from

previous vertex we make O(n) changes over the whole face.

Proof. Since each shortest path tree is a spanning tree, it is bound to have exactly

n−1 edges. Also by Lemma 2.4.2 we know that each arc exist in continuous sequence

of vertices, each arc can then enter in the shortest path tree only once as we move

around f∞. In order to maintain the edges in the tree for each incoming edge exactly

one edge leaves the tree. Hence, each arc can contribute to one addition and one

deletion of edge. As number of arcs are m there can be at most m edge changes (a

change corresponds to one edge deletion and one edge insertion). Also for planar

graph m is bounded by O(n), so the number of changes can be bounded to O(n).

After making the shortest path tree on first vertex on f∞, they slide the root

vertex from v1 to v2 along the edge connecting the two vertices. Now at v1 all vertices

have distances marked as their shortest distances from v1. As they move along the

edge the distances of vertices change gradually such that at any time distance of

only one vertex vx is incorrect, which is corrected by a single edge change. The tree

is maintained using operations of dynamic trees, hence they go on performing edge

changes as they reach v2. All these edge deletions and insertions can be stored in

list EdgAddi and EdgDeli respectively for each vertex vi.

Hence, using MSSP algorithm we can retrieve information of EdgAdd and EdgDel

for the given planar graph embedding as described above.



Chapter 3

Top tree for Planar Graphs

3.1 Introduction

Top tree is a powerful data structure for maintaining dynamic trees. It can solve

problems on trees dealing with properties based on vertices, edges and paths as intro-

duced in Section 2.3. It solves a variety of problems for trees including aggregating

information, nearest marked vertex, maintaining center and diameter, subject to

dynamic updates in the tree as edge insertion and deletion. The aim is to make a

similar structure for planar graphs that can solve problems related to vertices, edges

and faces.

The possible implementation of top trees is described by Alstrup et. al[1] and

Werneck[2]. The top tree on a graph G having n vertices can be made in O(n) time

using O(n) space. They have implemented each of the three update operations that

change the structure of top tree, namely Link, Cut and Expose in O(logn) time.

Expose operation on a cluster path, takes two vertices (ends of cluster path) and

exposes them to the root cluster, taking O(logn) for each.

Our solution introduces a data structure Dtt similar to top trees, that solves a

limited set of problems based on how the local solution for subgraph can be merged to

form the solution of the whole graph. Technically Dtt is easily implementable using

top trees, the main contribution of Dtt is the design of the interface, providing

user an easier access to advanced techniques using top trees to solve problems on

planar graphs. We use the phrase subgraph enclosed by a cycle or cut, which refers

the subgraph of the planar graph that is either internal or external to the cycle (or

cut). We introduce the notion of exposing the planar graph on a subgraph enclosed

by a cycle or cut. There exist an analogy between top trees and Dtt. The two

boundary vertices in top trees is analogous to the cycle or cut in Dtt. The cluster

path connecting the boundary vertices is analogous to the subgraph enclosed by the

cycle. In case Dtt is not exposed on any cycle or cut, the data on Dtt accounts

for the whole graph, whereas, on an exposed Dtt the data will only account for the

subgraph that is internal or external to the cycle(or cut) in the primal graph. A

15
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cycle in the primal graph appears as a cut in the dual graph and vice versa. Hence,

both cycle and cut corresponds to the primal graph unless specified otherwise.

For a given embedded planar graph G having n vertices ,we make a data struc-

ture Dtt in O(n) time and using O(n) space. It can update the weights of an

element(vertex,edge or face) in O(logn) time. The Access and Query operations

are performed in O(1) time. Expose operation called on a subgraph, enclosed by a

cycle or cut of size d is performed in O(dlogn) time. Note that the size of input for

Expose is d, hence any algorithm for this problem will require Ω(d) time.

The first problem solved using Dtt is aggregating information (Minimum, max-

imum or sum) on elements(vertices, edges or faces) of planar graph G having n

vertices, with queries and additive weight updates on the elements of a subgraph,

enclosed by a cycle (or cut) including or excluding the external cycle(or cut). The

queries and updates are performed in an online fashion. The solution takes O(dlogn)

time for performing expose and O(logn) time to perform query and update opera-

tions where d is the length of the input cycle(or cut). Whereas a trivial solution for

this problem require O(n) time.

The second problem solved using Dtt is maintaining dynamic Minimum Spanning

Tree(referred as MST) of a planar graph G having n vertices, which allows online

updates on edge weights and query of MST of a subgraph enclosed by a cut on G.

The solution takes O(dlogn) time for performing query of MST on a subgraph and

O(logn) time to perform query and update operations where d is the length of the

input cut. Whereas a trivial solution for this problem require O(nlogn) time.

The main idea used is the existence of interdigitating trees in planar graphs as

explained in Section 2.2.3. All the edges of the graph are covered by maintaining

two top trees, on the spanning tree of primal and dual graphs respectively. Top

trees on primal spanning tree maintains information of vertices, whereas that of

dual spanning tree maintains information on faces. The information on edges can

be maintained by either or both of the trees. Further the operation expose is used

to isolate the information for a subgraph enclosed by a cycle or cut.

We begin with giving an overview of the result we obtained and the intuition

behind the approach used in Section 3.2. The the structure of Dtt is described giving

details of its interface provided to the user in Section 3.4. Then the implementation

details of various external operations of Dtt are described in Section 3.5 and analysed

in Section 3.6. Then the applications of Dtt for Aggregating information on Planar

graph and to maintain dynamic MST on subgraph of the planar graph are described

in Section 3.7 and Section 3.8 respectively.
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3.2 Overview

As mentioned in previous section, the main aim was to develop a structure similar to

top trees that can address problems on planar graphs. However, several difficulties

exist with planar graphs as compared to trees that limits the dynamic nature of

the structure Dtt. In Dtt, we do not allow addition or deletion of edges. Link and

Cut cannot be performed directly as an external operation as it would change the

structure of the planar graph, and in particular the faces. Further adding an edge

may make the graph non-planar, so only those edges can be added whose vertices

share a common face. Each edge addition splits a face into two. Also each edge

deletion merges two faces as one.

The property of interdigitating trees explained in Section 2.2.3 is used to repre-

sent the graph using two spanning trees. Top trees are made on each of the spanning

trees. The main operation Expose called on cycle or cut of the primal graph, divides

a top tree into two trees representing subgraph internal and external to the cycle.

This is done by changing the spanning tree of the concerned top tree such that only

one edge is common to the cycle or cut. This can be achieved easily using the top

trees present in the structure.

The flexibility of choosing any spanning tree to make Td and Tp and any spanning

tree of the subgraph enclosed by a cut in expose, allows us to solve dynamic MST

problem described in Section 3.8. The MST of graph G is chosen as the spanning

tree of the primal graph. For making the spanning tree of the subgraph enclosed by

the cut while performing expose, we choose the minimum weight edges that makes

an MST on the subgraph. The main idea behind this approach is similar to one

used by Epstien et al.[17] for maintaining fully dynamic MST for planar graphs.

3.3 Exposing a subgraph in primal and dual graphs

Input of the expose operation is a cycle or a cut on the primal graph representing the

subgraph that has to be exposed. A cycle on the primal graph represents a cut on

the dual graph and vice-versa. A cycle in the primal graph (shown in Figure3.1(a))

is used to expose the subgraph of the dual graph that is internal or external to

the cycle as shown in Figure 3.1(b). Similarly a cut in the graph(represented by a

cycle in dual graph shown in Figure3.1(c)) exposes a subgraph of the primal graph

internal or external to the cut as shown in Figure 3.1(d). A cycle (or cut) can

enclose two subgraphs, one internal and one external to it. To identify uniquely

the subgraph enclosed a convention is used based on the convention used by the

planar embedding to order the edges around a vertex. It can be either clockwise or

anti-clockwise. Without loss of generality assuming the order used is clockwise, the

euler tour will traverse all the faces in anti clockwise direction. Hence, given a cycle
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Figure 3.1: The figure shows how the expose operation changes divides a planar
graph (a) Shows a cycle on the primal graphs, (b) Shows the dual subgraphs enclosed
by the cycle of primal graph, (c) Shows a cycle on dual graph (representing a cut on
primal graph), (d) Shows the primal subgraphs enclosed by the cut on the primal
graph.

whose edges are ordered in anti-clockwise direction on the embedding will represent

the subgraph internal to the cycle and clockwise order will correspond to external

of cycle. Also a cut in the primal graph is a cycle in the dual graph. So similarly for

the top tree on dual graph, a cycle in anti-clockwise order represents the subgraph

internal to it and vice-versa.

3.4 Top Trees Structure for Planar Graphs

Top tree structure Dtt can be made for a planar graph G, by representing it with

two top trees Tp and Td, respectively on the interdigitating trees on primal and dual

graphs. Any spanning tree can be selected to choose these interdigitating trees.

Further, when expose is called on a cut(or cycle) Tp (or Td) is modified such that

only one edge of Tp(or Td) intersects the cut(or cycle). Now the top tree Tp(or Td)

can be divided into two top trees Tp and T ∗p (or Td and T ∗d ) such that Tp(or Td)

represents the subgraph internal to the cut(or cycle) and T ∗p (or T ∗d ) represents the

subgraph external to the cut(cycle) by removing the edge e∗ intersecting the cut(or

cycle). Also an edge e∗ is maintained as a base cluster of top tree required to join

the two trees Tp and T ∗p (or Td and T ∗d ) when G is unexposed. Weights on vertices

and faces are saved in external arrays namely wv and wf .

As opposed to top tree made on a tree, making a top tree like structure on a

planar graph has some limitations. The fully dynamic updates are not allowed,

that is to change the structure of graph using Link and Cut, because of numerous

reasons. Firstly, any edge insertion will split a face in two adjacent faces, also any

edge deletion will merge the two faces adjacent to it. Since the structure allows data

to be associated with a face, it may lead to inconsistency as a vertex will be added
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to Td, which is not supported by top trees. Further performing a Link cannot be

done for any edge as it might make the graph non-planar. A Link is possible only

when the two vertices adjacent to the edge share a common face.

The most non-trivial aspect of the data structure is the operation Expose. It

makes a top tree on the spanning tree of the subgraph enclosed by the cycle (or cut).

Thus any information maintained on trees using top trees, as diameter or center can

be maintained for this spanning tree.

User is allowed to store some data on clusters of Tp and Td respectively. Generally

the data on clusters of Tp is dependent on properties of vertices and that stored on

clusters of Td is dependent on properties of faces. The user has to define how this

data is modified when internal operations of both top trees are performed. Further

the external operations of Dtt can be accessed by user to solve the problem.

The main intention behind Expose is to reduce the data on Tp (or Td) to represent

the exposed subgraph only, now it can also be used to perform lazy update or query

on the subgraph. When a graph is exposed on a cycle/cut the top tree is divided

into two sections that were earlier separated by the cycle/cut.

The data structure Dtt can be initialised by finding any spanning tree and making

a top tree on it. Both these operations can be performed in O(n) time using O(n)

space.

3.4.1 External Operations on the Graph

These operations are used to define the algorithm for solving a problem. They

modify the structure Dtt and are implemented using some internal operations of top

trees. The structure supports the following external operations defined as follows:

1. Expose(Cycle C): This operation exposes a cycle C of the primal graph

dividing the Td into Td and T ∗d representing the subgraph enclosed by the

cycle and the residual graph respectively. It is used for operations in the dual

graph especially on properties related to faces.

2. Expose(Cut C∗): This operation exposes a cut C∗ of the primal graph di-

viding the Tp into Tp and T ∗p representing the subgraph enclosed by the cycle

and the residual graph respectively. It is used for operations in the primal

graph especially on properties related to vertices.

3. UnExpose: This operation restores the graph after an expose to represent

the whole graph.

4. Access(Vertex v): It allows user to access the data stored in the root cluster

of the primal top tree Tp having vertex v.
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5. Access(Face f): It allows user to access the data stored in the root cluster

of the dual top tree Td having vertex corresponding to face f .

6. Update(Element e): It involves updating the weight of a vertex, edge or

face in a weighted graph.

Note: No operations corresponding to Link and Cut in top trees are present that

changes the structure of the graph. These can be partially simulated by changing

the weight of the edge to be ∞ or zero according to application.

3.4.2 Internal Operations

The external operations are performed using a series of internal operations available

in top trees. These are not accessible to the user, but defines how the data on

clusters of Tp and Td is modified on application of these internal operations. Each

of these operations are separately defined for Tp and Td. There are four internal

operations

1. Create(Edge e): It creates a base cluster of the top tree, representing an

edge of graph G.

2. Join(A,B): It joins the two given clusters that have exactly one common

boundary vertex on the corresponding graph(primal or dual). It returns a

cluster C that has A and B as its children.

3. Split(C): It deletes the cluster C and returns its two child clusters A and B.

4. Destroy(Edge e): It deletes the base cluster representing the edge e.

3.5 Implementation details

This section describes how various External operations of Dtt are performed using

operations of the top tree. Most of these implementations are trivial except for

Expose and Update Element. In order to perform these operations efficiently some

extra data is stored on each cluster that is not accessible by the user.

3.5.1 Expose(Cycle/Cut) and UnExpose:

Implementing Expose on a cycle (and hence on Td) is similar to that on a cut(and

hence on Tp), only change being using Tp and Td interchangibly. For implementing

expose on a cycle C (i.e. on dual graph G∗), the top tree Td is divided into two trees

namely Td and T ∗d , such that they are respectively internal and external to C. Tp

remains to be a spanning tree of the primal graph. Since the spanning tree of dual
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Figure 3.2: The figure shows how the expose operation changes the spanning tree
on primal and dual graphs. (a) Shows the primal graphs , (b) Shows the spanning
tree of primal and dual graph,indicating a cycle C by dashed lines, (c) Shows the
new spanning trees after calling expose on C such that only one edge of C intersects
the spanning tree on dual graph.

graph has to be connected, yet it is divided into two trees (Td and T ∗d ), the extra

edge e∗ not present in either of them is stored separately. Hence we modify the

spanning tree of the dual graph such that it contains only one edge that is present

in the cycle C. Finally since all edges of G has to be present in either Tp or Td, all

edges of C will now be present in Tp except for e∗.

For each edge e of Td present in C, Cut is performed on Td. This edge is to

be added to Tp, forming a cycle Cp. The replacement edge of e is an edge from

Tp present in Cp and not in C. This replacement edge has to be deleted from Tp

and added to Td. To perform this operation efficiently we mark all the edges of C

present in Tp. Now replacement edge is any unmarked edge on the cycle Cp formed

by adding edge e to Tp.

Edges on the cycle C that are on Tp, are marked by setting a flag in an array

Mark defined for all edges. The flag is set to indicate a marked edge or its presence

on cycle C. Each cluster stores an available unmarked edge (if present) on the cluster

path. An edge from Tp that is present in Cp and not in C, is found by finding the

available unmarked edge on Cp.

Data Stored on Cluster

Each cluster stores an available unmarked edge on the cluster path in eum. The

value of eum is NULL in case no unmarked edge is present on the cluster path.

Data manipulation by internal operations

A base cluster on edge e, made by Create is initially initialised according to mark

flag on e. So eum = e if Mark(e) is zero and em = NULL if Mark(e) = 1. When

Join is performed on clusters A and B to make C, the available unmarked edge
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of either A or B present on the cluster path of C is stored in eum. For compress,

eum(C) = eum(A), if eum(A) 6= NULL and eum(C) = eum(B) otherwise . For rake,

eum(C) = eum(A). No change is performed on data for split and delete.

Algorithm

In Algorithm 3.1, in the first for loop all the edges of C present in Tp are marked.

In the second loop, for each edge e(x, y) (where x and y are vertices of dual graph

and hence faces of primal graph) of C present in Td, a replacement edge is found in

Tp as explained earlier. The edge e is then replaced by the replacement edge etmp in

Td. Also e is now marked since it is an edge of C present in Tp.

The replacement edge etmp cannot be found if all the edges on the cycle Cp are

in C. Hence, the cluster path represents the cycle C, indicating that all edges on

Td are now internal to C. Finally in the third loop, all edges on C are unmarked to

restore the state of Dtt.

Unexpose is performed by simply by performing Link(e∗) on Td.

3.5.2 Update(Element):

To update a vertex v(or face f) expose is called on the corresponding top tree Tp (or

Td), such that v(or f) to be updated becomes a boundary vertex. Since the data on

the cluster does not take the boundary vertices into account, value of v(or f) can

be safely updated in wtv(or wtf ) as it is not internal to any cluster on Tp(or Td).

The weight on an edge is stored on the base clusters of top tree. Cut is performed

on the edge and then it can be safely updated, followed by performing Link to restore

it.

3.5.3 Update(Cluster) and Query:

The root cluster of respective top tree (Tp or Td) is returned to the user. It can be

used to update or query the data stored on the root cluster.

3.6 Analysis

The analysis of all the internal operations of Dtt is similar to that of Top trees.

Hence, all internal operations are performed in O(1) time. All the external opera-

tions of top trees namely Link, Cut and Expose require O(logn) time as claimed

Alstrup[1] and Werneck[2].

External operations of Dtt namely Access and Query are performed in O(1)

time as it directly accesses the root cluster of Tp or Td. Unexpose and Update

requires constant number of Link,Cut and Expose operations on top tree. Hence
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Algorithm 3.1: Exposing a cycle C on the dual graph G∗

Input : Planar Graph embedding G having a cycle C in the primal graph,
with the data structure Dtt built on G.

Output: Td: Top tree on dual graph G∗ internal to cycle C
T ∗d : Top tree on dual graph G∗ external to cycle C
e∗: Edge separating the top trees Td and T ∗d

/*Marking all the edges of C present in Tp */

foreach edge e ∈ C do
if e ∈ Tp then

Cut(e) in Tp;
Mark(e) ← 1;
Link(e) in Tp;

end
end

/*Finding replacement edge for each edge of C present in Td */

foreach edge e(x, y) ∈ C, with x internal to C do
if e ∈ Td then

Cut(e) on Td;
Expose Tp on path xy;
Access(x) and etmp ← eum;
/*etmp is assigned the value of eum stored on the root

cluster returned by Access(x) */

if etmp 6= NULL then
Cut(etmp) on Tp;
Link(etmp) on Td;
Mark(e) ← 1;
Link(e) on Tp;

else
e∗ ← e;
T ∗d ← Access(y);

end
end

end

/*Unmarking all the edges of C */

foreach edge e ∈ C do
if e ∈ Tp then

Cut(e) in Tp;
Mark(e) ← 0;
Link(e) in Tp;

end
end
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it is performed in O(logn) time. Assuming the length of the exposed cycle/cut C

to be d, Expose operation of Dtt performs constant number of external functions

of top trees (Link, Cut, Expose) for each edge of C as described in Algorithm 3.1.

Hence, Expose can be performed on a cycle of size d in O(dlogn) time.

Hence, following can be stated

Theorem 3.6.1. Given an embedded planar graph G having n vertices ,we can make

a data structure Dtt in O(n) time and using O(n) space, which allows Update of an

element in O(logn) time and performing Access, Query in O(1) time and Expose

in O(dlogn) time, on a subgraph enclosed by a cycle or cut of size d.

3.7 Aggregating Information on Planar Graphs

It basically includes problems dealing with performing operations (as minimum,

maximum, sum) on the elements (vertices, edges or faces) of a subgraph enclosed

by a cycle(or cut). In case of edges, the solution may or may not include the cycle

(or cut). Many operations can be considered in this category, but current solution

limits it to the problems that can be classified using the following properties:

1. Elements: Vertices/Faces/Edges

2. Operation: Minimum/Maximum/Sum

3. Limit on External Cycle/Cut: Including/Excluding

Any combination of the above properties can be currently solved by the data

structure Dtt. Solutions of these problems differ only in how the data is initialised

and manipulated during various internal operations of top trees as Create, Destroy,

Join and Split. Faces are handled using Td, where the graph can be exposed on a

Cycle representing a subgraph in the dual graph G∗. Vertices are handled using Tp,

where the graph is exposed on a Cut representing a subgraph in the primal graph G.

Edges can be handled using either of Tp or Td based on whether it needs to perform

operations and updates on cycles or cuts in the primal graph. Note that for vertices

(or faces) the information aggregated on the subgraph enclosed by a cut(or cycle) is

same as the information aggregated on the subtree represented by the root cluster

of Tp (or Td) and can be used interchangibly.

Since a face in the dual graph and a vertex in the primal graph can be treated

similarly, the solution is presented for performing additive weight updates and find-

ing minimum weighted vertex in the subgraph enclosed by a cut C∗ of the primal

graph. The solution is then extended to solve the other operations and handle other

elements of the problem.
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3.7.1 Minimum Weighted Vertex on subgraph

The problem is solved using operations on top tree Tp and the subgraph is implied

by using a cut C∗ in the primal graph where weights of vertices are stored in an

external array wv.

Operations Allowed

1. Update an Element (Vertex)

2. Add constant to weights of vertices in a subgraph (enclosed by a cut)

3. Query for the minimum weighted vertex in a subgraph (enclosed by a cut)

Solving the problem using data structure Dtt involve two parts. Firstly, the data

stored on each cluster and its manipulation by the internal operations. Secondly,

the algorithm for each operations mentioned above using a the external operations

of Dtt.

Data on Each Cluster

1. Data Variable(xd): The weight of the minimum weighted vertex in the sub-

tree represented by the cluster excluding the boundary vertices.

2. Update Variable(xu): The lazy update information acting as additive up-

date to the weight of each element of the sub-tree represented by the cluster.

This update is already applied on the value of xd and that of external vertices.

3. Solution(vmin): The minimum weighted vertex in the subtree represented by

the cluster excluding the boundary vertices.

Manipulating Data using Internal operations

1. Create(Edge e): Since the information stored on data variables exclude the

boundary vertices, for a base cluster consisting of two boundary vertices the

data will be initialised as xd =∞, xu = 0 and vmin = NULL.

2. Join(A,B): The update variable xu will be initialised with zero for the new

cluster formed. Let the cluster path for A be xy and that of B be yz. The

data for the cluster C formed is initialized as following

(a) For compress operation such that the cluster path of C is xz

xd(C) = min(xd(A), xd(B), wtv(y))

(b) For rake operation such that the cluster path of C is xy

xd(C) = min(xd(A), xd(B), wtv(z))
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The vertex vmin(C) is initialised accordingly.

3. Split(C): The update variable will propagate the update to both child clusters

A and B, updating the weight of minimum weighted vertex and the disap-

pearing vertex x as

xd(A) = xd(A) + xu(C)

xu(A) = xu(A) + xu(C)

wtv(x) = wtv(x) + xu(C)

4. Destroy(c): It has no effect on the xd or xu.

Algorithm

1. Update an Element (Vertex): External operation of Dtt can be directly used

to update the weight on vertices.

2. Additive update to subgraph (enclosed by a cut): The subgraph is first exposed

on the cut using the external operation Expose on Dtt. Let Tp have boundary

vertices vx and vy. Then Access(vx) is used to add the constant xc, as follows

xu = xu + xc

xd = xd + xc

wtv(vx) = wtv(vx) + xc

wtv(vy) = wtv(vy) + xc

3. Query: The subgraph is first exposed on the cut using the external operation

Expose on Dtt. Let Tp have boundary vertices vx and vy. Then Access(vx) is

used to find the answer to the query as follows

Answer = min(xd, wtx(vx), wtx(vy))

The minimum weighted vertex vmin is returned accordingly.

3.7.2 Handling other operations

The operation Maximum can be handled similarly by changing the identity element

used during initialization and the operation used in Join. However, for maintaining

Sum an extra data element is used on each cluster namely Size (xs). It stores the

number of elements on the cluster excluding the boundary vertices. It is initialized

with zero for base clusters and used in other operations as follows:

1. For Join(A,B) in case of both compress or rake to form the cluster C

xs(C) = xs(A) + xs(B) + 1

2. For additive updates of weight xc to the weights of elements in the subgraph

xd = xd + xs ∗ xc
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3.7.3 Handling faces and edges

Faces can be handled easily by replacing Tp by Td and vice-versa because of the

duality property as explained in Section 2.2.2. Also we use the weights of faces wtf

instead of weights of vertices wtv.

However, dealing with edges is difficult as all edges are not present in either Tp

or Td. So the information of each edge is stored on the vertices or faces adjacent

to it. Note that using this procedure all the edges are counted twice as each edge

is adjacent to two vertices and two faces. Now according to whether the expose is

used with Cycles or Cuts, we can use either Td or Tp respectively. Again the solution

for both the cases will be similar because they are represented as vertices and faces

in Tp and Td respectively. Also whether or not external cycle or cut defining the

subgraph has to be used in aggregation comes into picture only for edges.

Considering expose on Cuts, information is aggregated on respective vertices.

The solution will be based on primal graph and hence Tp, with queries including the

external cut as well.

Maintaining Minimum/Maximum

The non-trivial part of this problem is the change in value stored on vertex if an edge

update on a single edge is applied. The query and additive increment is same as

that for vertices. To maintain the minimum(or maximum) edge, stored on a vertex,

a segment tree is built on each vertex having entries for each edge maintaining the

minimum(or maximum) value at the root. Now whenever the weight of an individual

edge is updated, it is updated in the segment tree and hence new minimum(or

maximum) can be found in O(logn) time. Also while performing an additive update

on the subgraph similar update is done on the vertices adjacent to the edges on the

Cut.

Maintaining Sum

Maintaining Sum of edges is simple as weight of each vertices can be initialised with

the sum of edges adjacent to it. The number of edges incident is stored for each

vertex in an external array szv. szv is used to update xs in join operations with

disappearing vertex vx as

xs(C) = xs(A) + xs(B) + szv(vx)

Since weight of each edge is added twice in the sum except for the edges on the

external cut, the sum of the edges on cut is taken in EdgSum. The corrected Sum

is hence calculated as

Sum∗ = (Sum + EdgSum)/2

Now the updates on edges can be simply handled by adding the change in weight to

corresponding vertices. And additive increment of weight xc is handled by adding
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weight to lazy update. The sum is updated as

xd = xd + xs ∗ xc

Also xc is added to lazy update xu, but as it is propagated down to the base clusters,

each vertex adjacent to and edge adds only half of xu to the edge, because the edge

is updated for the same additive update by two vertices.

Handling exclusion of External Cycle/Cut

If edges on the external cut are to be excluded from the Sum, the corrected sum is

now calculated as

Sum∗ = (Sum− EdgSum)/2

For minimum/maximum the edges of the cycle/cut are first removed from the ver-

tices in the segment tree by performing edge updates. These are later added back

to the segment tree to restore the data.

Hence, following theorem can be stated

Theorem 3.7.1. Given an embedded planar graph G having n vertices, we can make

a data structure Dtt in O(n) time and using O(n) space, which allows updating an

element in O(logn) time, aggregating information and performing additive weight

updates on elements(vertices,edges and faces) of a subgraph enclosed by a cycle or

cut of size d in O(dlogn) time.

3.8 Minimum Spanning Tree on a subgraph of

planar graph

Given an embedded planar graph G having n vertices and edges having non-negative

weights. We intend to find a spanning tree such that the sum of edges on the

spanning tree is minimum, for any subgraph enclosed by a cut of the planar graph

subject to online weight updates on edges.

The main idea behind solving this is based on the solution of Epstien et al.[17] for

maintaining dynamic Minimum spanning tree(referred as MST). The idea exploits

two basic properties of MST namely Cycle property and the Cut property.

Lemma 3.8.1. (Cycle Property) Given a cycle C in a graph G, the edge on C whose

weight is strictly larger than weights of all other edges on C cannot be a part of the

MST of G.

Lemma 3.8.2. (Cut Property) Given a cut C∗ in a graph G, the edge on C∗ whose

weight is strictly smaller than weights of all other edges on C∗ will be a part of MST

of G.

We propose an algorithm to find the MST for any subgraph enclosed by a cut

of an embedded planar graph G using data structure Dtt. Since spanning tree is
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based on vertices of G, MST will be maintained on the primal graph and hence Tp.

Firstly, instead of choosing any spanning trees for making Tp and Td, we choose the

MST of G to be the spanning tree on which Tp is made. Secondly, we modify the

Expose and Unexpose operations, such that when ever Expose is called on a cut

C∗, the modified Tp represents the MST of the subgraph enclosed by the cut C∗.

In the Expose algorithm (refer to Algortihm 3.1) exposing the dual graph on a

cycle C, when a Cut is performed on an edge e, its replacement edge is found from

the primal graph. Any unmarked edge on Tp is chosen to be the replacement edge.

Here we expose the primal graph on a cut C∗, hence the replacement edge is found

on Td. However, instead of choosing any unmarked edge, the minimum weighted

unmarked edge on the cycle Cd formed by adding e to Td is chosen as the replacement

edge. Also for performing Unexpose, the MST has to be restored for the whole

graph, so for each edge ed of Td on cut C∗, we check whether it is the maximum

weight edge in the cycle formed by adding ed to Tp. If not, ep is added and the

corresponding maximum weighted edge is removed from the MST and hence Tp.

3.8.1 Modified Expose Operation

Since Expose is performed on a cut, Tp will be divided into two trees namely Tp

and T ∗p representing internal and external of the cut respectively. All the edges of

C∗ will be present in Td except the extra edge e∗ that connects Tp and T ∗p to make

the complete spanning tree of the primal graph.

The difference in implementation of Expose operation lies in operation to find

the replacement edge etmp ∈ Td for all edges e ∈ C∗ that were originally in Tp. Recall

that all edges of C∗ on Td are marked so that they are not selected as replacement

edge. Instead of selecting any unmarked edge we now select the unmarked edge

having the minimum edge because of the Cut property described in Lemma 3.8.2.

To find this replacement edge efficiently, top tree Td is used by storing some data

on Td as explained.

Data Stored on each cluster of Td

Each cluster stores the available unmarked edge on the cluster path having minimum

weight in eum. The value of eum is NULL in case no unmarked edge is present on

the cluster path. The weight of the minimum weighted unmarked edge eum is stored

on dum.

Data manipulation by internal operations

A base cluster on edge made by Create is initialised according to mark flag on the

edge as follows.
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1. For an unmarked edge e with weight x

eum = e, dum = x

2. For a marked edge e with weight x

eum = NULL, dum =∞

Cluster C made by Join, on clusters A and B having cluster paths xy and yz

respectively, dum is initialised as follows initialising eum accordingly.

1. For a compress operation with xz as the cluster path of C

dum(C) = min(dum(A), dum(B))

2. For a reke operation with xy as the cluster path of C

dum(C) = dum(A)

No change is performed on data for split and delete.

Algorithm

Algorithm is same as original implementation of Expose on a cut C∗ mentioned in

Section 3.5.1.

3.8.2 Modified Unexpose Operation

Earlier Unexpose was simply performed by adding the edge e∗ to merge the trees

Tp and T ∗p , restoring the spanning tree of G. However, for restoring a MST of G

each edge on the exposed cut C∗ is checked for its presence in the MST. Hence for

an edge e on C∗ present in Td, we find the maximum weighted edge emax on the

cycle Cp formed by adding e to Tp. If weight of emax is greater than the weight of e,

by Lemma3.8.1 emax will not be a part of MST. So we remove emax from MST and

add e to the MST, and hence Tp. To perform this operation efficiently some data is

added to each cluster of Tp as explained.

Data Stored on each cluster of Tp

Each cluster stores the edge on the cluster path having maximum weight in emax.

The weight of the maximum weighted edge emax is stored on dmax.

Data manipulation by internal operations

A base cluster on edge e, made by Create is initialised with e as emax and wt(e) as

dmax.

Cluster C made by Join, on clusters A and B having cluster paths xy and yz

respectively, dmax is initialised as follows initialising emax accordingly.
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1. For a compress operation with xz as the cluster path of C

dmax(C) = max(dmax(A), dmax(B))

2. For a reke operation with xy as the cluster path of C

dmax(C) = dmax(A)

No change is performed on data for split and delete.

Algorithm

Algorithm 3.2: Unexposing Dtt earlier exposed on a cut C∗ on the primal
graph G

Input : Planar Graph embedding G having a cut C∗ in the primal graph,
with the data structure Dtt built on G which is exposed on the cut
C∗.

Output: Tp: Top tree on primal graph G
Td: Top tree on dual graph G∗

Perform Link(e∗) on Tp;

foreach edge e(x, y) ∈ C∗, with x internal to C∗ do
if e ∈ Td then

Expose Tp on path xy;
Access(x) and etmp ← emax,dtmp ← dmax;
if wt(e) < dtmp then

Cut(etmp) on Tp;
Cut(e) on Td;
Link(etmp) on Td;
Link(e) on Tp;

end
end

end

In Algorithm 3.2, firstly Link is performed on e∗ to link Tp and T ∗p . Now each

edge on cut C∗ is checked for its inclusion in MST using the cycle property described

in Lemma 3.8.1.

3.8.3 Updating edge weight

This operation is performed only on unexposed Dtt. Updates on edge weights are

handled similar to checking for inclusion or exclusion of an edge in Expose and

Unexpose. It uses the data stored on clusters of Tp and Td as described earlier.

As described in Algorithm 3.3, if the weight of an edge present in MST is de-

creased, it still remains to be a part of MST. Similarly if the weight of an edge not

present in MST is increased, it still remains excluded from the MST. However, their

weights are updated on the clusters of Tp and Td respectively. But if the weight of an
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edge of MST is increased, or the weight of an edge not present in MST is decreased,

it is checked for its inclusion or exclusion from MST as described in Algorithm 3.3.

Algorithm 3.3: Updating the weight of an edge e from wt(e) to wt∗(e).

Input : Planar Graph embedding G , with the data structure Dtt built on
G which is not exposed on any cycle or cut.

Output: Tp: Top tree on primal graph G representing the new MST.

if e(x, y) ∈ Tp then
Expose Td on path xy;
Access(Face adjacent to e)) and etmp ← eum,dtmp ← dum;
if wt∗(e) > dtmp then

Cut(etmp) on Td;
Cut(e) on Tp;
Update weight of e;
Link(etmp) on Tp;
Link(e) on Td;

else
Expose Tp on path xy(Edge);
Update weight of e;
Access(x) and dmin ← wt∗(e)

end
else

Expose Tp on path xy;
Access(x) and etmp ← emax,dtmp ← dmax;
if wt∗(e) < dtmp then

Cut(etmp) on Tp;
Cut(e) on Td;
Update weight of e;
Link(etmp) on Td;
Link(e) on Tp;

else
Expose Td on path xy(Edge);
Update weight of e;
Access(Face adjacent to e) and dum ← wt∗(e)

end
end

3.8.4 Analysis

In Expose and Unexpose operations, for each edge on the cut C∗ of size d, constant

number of Link and Cut operations are used, each taking O(logn) time. Hence

Expose and Unexpose can be performed in O(dlogn) time.

To update the weight on an edge constant number of Link and Cut operations

are used. Hence it can be performed in O(logn) time.

Hence, following theorem can be stated
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Theorem 3.8.3. Given an embedded planar graph G having n vertices, we can make

a data structure Dtt in O(n) time and using O(n) space that maintains a top tree

Td on the MST of G, allowing updates on weight of an edges in O(logn) time and

finding the MST of a subgraph enclosed by a cut of size d in O(dlogn) time.



Chapter 4

Nearest Marked Vertex in Planar

Graph

4.1 Introduction

Nearest Marked Vertex problem is a variant of Shortest Path problem which deals

with dynamically marking/unmarking any vertex and querying the nearest marked

vertex of any given vertex in an online fashion. The problem defines two update

operations namely mark and unmark, and a query operation for querying nearest

marked vertex.

Marked ancestor problem for trees is an extensively studied problem and finds

application is solving many other theoretical problems[5]. The problem is then

extended to Nearest marked vertex problem in trees and solved by Alstrup et. al

[1] using top trees. It supports dynamic link and cuts, performing all operations in

O(logn) time. They also gave a solution for Nearest marked for a fixed undirected

graph on n vertices and m edges. They present a 2k − 1 approximate solution

using O(kn1+1/k) space data structure built in O(kmn1/klogn) expected time for any

positive integer parameter k, supporting both queries and updates in O(kn1/klogn)

time.

Given an embedded planar graph G having n vertices with infinite face f∞ having

d vertices, our aim is to be able to dynamically mark and unmark vertices such that

for any vertex v ∈ f∞ we can query the nearest marked vertex in an online fashion.

The problem can be extended to find the k nearest marked vertices for a given

vertex.

Two initial approaches for solving the same problem using some existing tech-

niques and data structures are discussed in section 4.5. It also compares the bounds

achieved by our final solution with that of these solutions.

We define a parameter S ∈ [1, d], such that our algorithm performs the update

operations in O(Slogn) time and query in O(nlogn/S) time using O(nS) space. Also

34
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it supports k queries in O((n/S + k)logn) time.

The solution is based on results presented by Klien [3] for Multiple Source Short-

est Path problem in planar graphs as explained in 2.4. They described a method to

make shortest path tree (referred as SPT ) of each vertex on f∞ from the SPT of its

preceding vertex on f∞, such that total edge changes for making all the SPT s is at

most O(n). We store the SPT s of some selected vertices named as Rooted Vertices,

such that we can make the SPT of any vertex on f∞ from the SPT of a rooted

vertex using O(n/S) edge changes in the worst case. For each of the rooted vertex

we maintain a top tree on its SPT and perform marking and unmarking of vertices

as the updates are performed on the graph. The solution of Nearest marked vertex

in trees by Alstrup [1] is used as explained in Section 2.3.4. We claim that we can

achieve these bounds using S rooted vertices.

A solution with equal bounds for both updates and queries is obtained by taking

S as
√
n resulting in both updates and query to be done in O(

√
nlogn) time using

O(n
√
n) space. This result takes same time as one by Alstrup et. al[1] for general

graphs, giving 3 approximation of the solution. We have given an exact solution for

planar graph with restriction that query can be done only on vertices of f∞.

We begin by giving an overview of how the result was obtained and the intuition

behind the approach we used in Section 4.2. We then state and prove a property

that limits the number of edge changes in making of the SPT s as we go around

the infinite face of a planar graph in Section 4.3. Also we describe the relation of

solution of nearest marked vertex on planar graphs with that on trees in Section 4.4.

We then present some initial approaches using existing techniques to solve the same

problem and compare it with our final solution in Section 4.5. Then we present

our final solution for solving nearest marked vertex problem in planar graphs in

Section 4.6. We further extend the solution to find k nearest marked vertices in

planar graphs modifying the query algorithm to find k nearest marked neighbours

in Section 4.7.

4.2 Overview

Initial approaches for the problem did not perform well for either updates or queries.

Our main aim is to provide a solution that would perform well for both queries and

updates. We establish a relationship of nearest marked vertex problem for planar

graphs and for trees, as a result instead of solving the problem for whole graph, we

can simply solve the problem on SPT of the query vertex. For solving the problem

of nearest marked vertex on tree we can use the solution explained in Section 2.3.4

using top trees.

Another important observation exploited in our approach is the limited edge

changes lemma. Klien [3] established the limited edge changes lemma (discussed in
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Section 2.4) claiming that, given any two vertices u, v ∈ f∞ we can make SPTv from

SPTu using O(n) edge changes in worst case. Hence making a top tree on SPTu, we

can make SPTv for all v ∈ f∞ using O(n) link and cuts each requiring O(logn) time.

Once the top tree is made we can query in O(1) time to find the nearest marked

vertex, and in O(logn) time the next nearest marked vertex and so on. Hence, by

storing a single top tree on any SPTu where u ∈ f∞, we can solve the problem.

However, this solution performs well only for updates, and uses O(nlogn) time

for query (to perform O(n) link and cuts). So the idea was to store more than one

top trees at equal intervals (in terms of number of edge changes), such that query

time can be reduced thereby increasing update time. Hence, we define a parameter

S denoting the number of trees stored, which can be varied from 1 to d for best

case of update and query respectively. A good choice of S is
√
n as it allows both

updates and query in the same time which is O(
√
nlogn).

So we start at any vertex labelling it as a rooted vertex and making a SPT on it.

We go on making the SPT of the next vertex on f∞ using a series of edge changes

on the previous SPT determined by MSSP algorithm. Clearly, if we take equal

interval of edge changes between every two of the S rooted vertices, the number of

edge changes for making SPT of any vertex from the rooted vertex preceding it will

be bounded by O(n/S).

4.3 Bounded Edge changes property

The main idea used in our various approaches to solve the problem is the one pre-

sented by Limited Edge Changes lemma, described in Section 2.4. If we select S

vertices from the infinite face to be rooted vertices and maintain shortest path trees

on them as described in Section 4.2, then the following result holds

Lemma 4.3.1. Given an embedded planar graph G with infinite face f∞ of size d.

We can maintain shortest path trees on S ∈ [1, d] rooted vertices such that shortest

path tree on any other vertex on f∞ can be obtained using O(n/S) edge changes to

shortest path tree on preceding rooted vertex.

Proof. We start with any vertex and mark it a rooted vertex. Now we move around

the infinite face counting number of edge changes from previous rooted vertex. This

can be done efficiently using the information provided by MSSP algorithm discussed

in Section 2.4. Let m be the number of directed edges of the planar graph. When

the count of edge changes exceeds m/S we mark the current vertex as rooted, reset

the count to zero and proceed with the algorithm till all vertices are covered.

Now a new rooted vertex will appear after m/S edge changes and the number

of edge changes are bounded by m by Limited Edge Changes lemma described in
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Section 2.4. So the number of rooted vertices are

m/(m/S) = S (4.1)

Also by the sparsity property of planar graphs the number of edges m, of a planar

graph is bounded by O(n) hence edge changes between two rooted vertices are

O(n)/S = O(n/S) (4.2)

Hence using S rooted vertices we can find shortest path tree for an vertex on infinite

face with O(n/S) edge changes if we choose the next rooted vertex after an edge

change interval of m/S.

Choosing S as
√
n we get the following result:

Corollary 4.3.2. Given an embedded planar graph G with infinite face f∞. We can

maintain shortest path trees on
√
n rooted vertices such that shortest path tree on

any other vertex on f∞ can be obtained using O(
√
n) edge changes to shortest path

tree on some rooted vertex.

4.4 Nearest marked vertex property

Maintaining Nearest Marked Vertex on a tree is described in Section 2.3.4. If we

can somehow reduce the graph to a tree such that the result of the nearest marked

vertex query does not change, we can solve the problem using a top tree. We claim

that Shortest Path Tree on the query vertex can be considered for such a reduction.

Lemma 4.4.1. Given an embedded planar graph G having a vertex v, let T be the

shortest path tree on v in G. Then the nearest marked vertex of v in the G is same

as the nearest marked vertex of v in T .

Proof. Since T is the shortest path tree, it is also a spanning tree hence it contains

all vertices of the connected graph. Now, if there exists a marked vertex in G that

is connected to v, then it is also present in T and hence connected to v. Similarly,

if there is no marked vertex connected to v in G, no marked vertex will be present

in T . Hence the result of the query holds true for the existence of a marked vertex,

i.e. if there is zero or one marked vertex.

Let there be at least two marked vertices x and y, such that x is the nearest

marked vertex of v in G and y is the nearest marked vertex of v in T . We claim that

x and y are either same or at equal distance from v. Since x is the nearest marked

vertex of v in G, the minimum distance from v to reach x and y are related as

distmin(v, x) ≤ distmin(v, y) (4.3)
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Also, since T is the shortest path tree, path from v to both x and y are shortest

paths. Further, the nearest marked vertex of v on T is y so

distmin(v, x) ≥ distmin(v, y) (4.4)

Hence, we have

distmin(v, x) = distmin(v, y) (4.5)

It implies that either x = y or both x and y can be considered as the nearest marked

vertex of v in both T and G.

4.5 Initial approaches

Given an embedded planar graph G with n vertices and infinite face f∞ with d

vertices, we intend to mark/unmark any vertex and report the nearest marked vertex

for any vertex v ∈ f∞ in an online fashion. We present two solutions for the problem,

first is a variant of Dijkstra’s algorithm and second based on segment tree.

First solution uses Dijkstra’s algorithm. It enables us to mark or unmark vertex

in constant time. It uses O(n) extra space to store a flag array for vertices, setting

the flag to represent a marked vertex. To mark or unmark we simply modify the

corresponding flag. For query we use Dijkstra’s algorithm in which each time a

vertex is added to shortest path tree, it is checked for being marked using its flag’s

status. We report the first marked vertex added to the shortest path tree. For

planar graphs, the sparsity lemma limits the number of edges to O(n), hence the

time taken for applying Dijkstra’s algorithm and hence query is O(nlogn). We can

go on searching for next marked vertex for finding k nearest marked vertices in

O(nlogn) time.

Second solution uses a segment tree for each vertex on f∞ allowing us to query

for nearest marked vertex in constant time. It uses d segment trees and two arrays

requiring O(dn) extra space. Firstly, we make d flag arrays of size n, storing for each

vertex on v ∈ f∞ all the vertices in order of their distance from v, setting the flag

to represent a marked vertex. We make a segment tree on each of these flag arrays,

whose nodes represents the marked vertex which is leftmost (or nearest to v) in its

subtree. Hence the root of segment tree of vertex v stores the nearest marked vertex

of v. Secondly, we make n index arrays of size d for each vertex u ∈ V of the graph,

storing the index of u in the d flag arrays. These structures can be initialised using

O(dnlogn) preprocessing time and O(dn) space. Now, to mark/unmark a vertex u

we use its index array to modify the corresponding flag and update the segment tree

of every vertex v ∈ f∞, using O(logn) time per update taking O(dlogn) time. To

query for a vertex v we report the value of the root of its segment tree in O(1) time.

For k queries we go on unmarking the nearest marked vertex in the segment tree
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of the query vertex v to get the next nearest marked vertex. All these vertices are

later marked again to restore information in the segment tree of v. Thus query for

k nearest marked vertices can be done in O(klogn) time.

Our solution has a parameter S ∈ [1, d], such that the updates are supported

in O(Slogn) time and each query is answered in O(1) time for S vertices and

O(nlogn/S) in the worst case. The bounds set by the initial approaches are met

at the two extreme values of S. However, the major drawback of the two initial

approaches is that they perform very badly for either update or query. Our solu-

tion can perform both operations in sublinear time using S =
√
n as described in

Table 4.1 comparing the solutions. Note that for large value of d, both the initial

algorithms proves inefficient for either query or updates.

Table 4.1: Comparison of different algorithms

Algorithm Mark/Unmark Query k-Query Space

Dijkstra’s Variant O(1) O(nlogn) O(nlogn) O(n)
Using Segment Trees O(dlogn) O(1) O(klogn) O(dn)

Our Result (for any S) O(Slogn) O(nlogn/S) O((n/S + k)logn) O(Sn)
Our Result (S =

√
n) O(

√
nlogn) O(

√
nlogn) O((

√
n + k)logn) O(n

√
n)

4.6 Nearest Marked Vertex in Planar Graphs

We first describe the data structure developed to solve the problem followed by the

details of the dynamic operations. The data structure is made by selecting S rooted

vertices from f∞ based on the property described by Lemma 4.3.1. For each rooted

vertex we store shortest path tree (referred as SPT ) and make a top tree on it as

described in Section 2.3.4 to solve nearest marked vertex problem in a tree. To

update we mark (or unmark) the vertex on each top tree and for query we generate

the top tree on SPT of the query vertex and query on that top tree.

4.6.1 Algorithm

This section presents the algorithm to mark, unmark and query the nearest marked

vertex of a planar graph embedding G, having m directed edges and n vertices, with

the infinite face f∞ of size d having vertices indexed as v1, v2, ..., vd, using a data

structure Dnmv that allows us to perform these operations efficiently. The updates

and queries are supported in an online fashion.

Data structure

We present a data structure Dnmv to support query of nearest marked vertex and

mark (or unmark) any vertex efficiently in an online fashion. Following are the main
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parts of the data structure:

1. Rooted Vertices: We select upto S of the d vertices of f∞ as rooted vertices.

We maintain an array of the indices of these rooted vertex in RV . The count

of the rooted vertices is stored in rvc.

2. Top trees on rooted vertices: We maintain a top tree TTr for SPTr of

each rooted vertex vr ∈ RV with a structure to solve nearest marked vertex

problem in trees.

3. Edge Change Information: To transform SPT of a rooted vertex to that

of any other vertex we may need to add and remove some edges. Hence, we

store the list of edges that are added and deleted when we transform SPTi−1

to SPTi in EdgAddi and EdgDeli respectively, for each vertex vi ∈ f∞.

Developing the data structure Dnmv for a given planar graph embedding is de-

scribed in Algorithm 4.1. Firstly the EdgAdd and EdgDel lists are made using

the MSSP algorithm as described in Section 2.4. Also we need to select S rooted

vertices on f∞, such that the number of changes EdgAdd or EdgDel for any vertex

from the preceding rooted vertex does not exceed O(n/S). We use Lemma 4.3.1

to select these rooted vertices. We begin by selecting the first vertex as the rooted

vertex and storing its index in RV . Then we go on marking the vertex that exceeds

m/S edge changes from the last rooted vertex, as the next rooted vertex storing the

indices of each rooted vertex in RV . A variable rvc maintains a counter for number

of root variables encountered.

We use a temporary Top Tree T on SPT1 with structure to solve nearest marked

vertex problem as described in Section 2.3.4. We modify T as we move along the face

with edge change operations saving a copy of the top tree for each rooted vertex vr

in TTr. A counter c is used to keep a count on number of edge changes encountered.

If c is greater than m/S we mark the vertex as a rooted vertex. However, we

maintain the count of changes c only for edge additions as in a spanning tree the

total number of edges has to remain n− 1, hence an edge change corresponds to a

single edge addition and edge deletion. Also note that Cut(e) is performed before

Link(e) because we cannot Link two vertices belonging to the same tree.

We also maintain a variable prev, which stores the last vertex which resulted in

an edge change, in T . This is required to make the Next array to deal with a special

case in Algorithm 4.2 for bounding the number of operations in updates.

Algorithm 4.1 uses MSSP algorithm described in Section 2.4 using O(nlogn)

time and O(n) space to store each EdgAdd, EdgDel and SPT1. The operations

MakeCopy makes a copy of a given top tree and MakeTopTree makes a Top Tree

on a given tree, each taking O(n) time. By Limited Edge Changes lemma we know

that edge changes are bounded by O(n) over the entire algorithm, hence both Link
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and Cut are performed O(n) times taking O(logn) time per operation resulting in

O(nlogn) time. Most expensive operation is MakeCopy when performed for each

rooted vertex. As proved earlier, the number of rooted vertices are bounded by S,

performing MakeCopy S times will take O(nS) time. Hence the overall Algorithm

4.1 is performed in O(nS) time. Also TT uses O(nS) space with EdgAdd and

EdgDel each using O(n) space. Therefore the total space required for Dnmv is

O(nS), taking O(nS) time for pre-computation.

Algorithm 4.1: Making the data structure Dnmv

Input : Planar Graph embedding G having m directed edges with infinite
face f∞ of size d with vertices indexed 1, 2, ..., d and a parameter
S ∈ [1, d]

Output: RV : Array of indices of rooted vertices in clockwise order
TTv : Top tree on shortest path tree of each vertex v ∈ RV
rvc : Number of rooted vertices
Next : Array storing for each vertex vi ∈ f∞ the next vertex
vj such that SPTi 6= SPTj

Top Tree T , rvc← 0, c← 0, prev ← 1;
Use MSSP to find SPT1 and populate EdgAddi, EdgDeli ∀vi ∈ f∞;
T ← MakeTopTree(SPT1);
RV [rvc]← 1;
TTrvc ← MakeCopy(T );
rvc← rvc + 1;

for i← 2 to d do
if EdgAddi 6= NULL then

Next[prev]← i;
prev ← i;

end
foreach edge e ∈ EdgDeli do Perform Cut(e) on T , c← c + 1 foreach
edge e ∈ EdgAddi do Perform Link(e) on T
if c > m/S then

RV [rvc]← i;
TTrvc ←MakeCopy(T );
c← 0, rvc← rvc + 1;

end
end

Dynamic Operations and Query

Both the operations of update (mark/unmark) and query are are performed on the

top trees TTi as explained in Section 2.3.4. For update, we have to update top tree

of each rooted vertex, whereas for query, we first generate the top tree on the SPT

of the query vertex and then query on it.

To Mark(or Unmark) a vertex, we mark(or unmark) the information on the top
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trees of all rooted vertices. Algorithm 4.2 describes answering a query on a vertex vx.

It is performed by modifying the top tree on the closest rooted vertex vr preceding

vx to obtain the top tree for the SPTx. It can be achieved by performing Link and

Cut on the edges present in EdgAddi and EdgDeli respectively for each i ∈ (r, x].

This will take at least O(x−r) time. However, x−r can be greater than O(n/S), so

we skip the vertices that don’t change the tree using Next array. Hence the vertices

traversed are bounded by O(n/S) as each vertex corresponds to at least one edge

change. After query we revert back the top tree. Notice that we have not copied

the top tree and then modified it, though it will allow us to avoid reconstructing

the older tree but the copying part may take O(n) time.

Algorithm 4.2: Query a vertex vx on f∞
Input : Planar Graph embedding G with infinite face f∞ and a vertex vx

on f∞ to be queried with structure Dnmv on G

Output: Nearest Marked Vertex vy of the vertex vx

r ←Binary Search of largest index less than or equal to x in RV ;
TempAdd← NULL, TempDel← NULL

for i← Next[r] where i ≤ x do
foreach edge e ∈ EdgDeli do

Cut(e) on TTr;
if e ∈ TempAdd then Remove e from TempAdd;
else Add e to TempDel

end
foreach edge e ∈ EdgAddi do

Link(e) on TTr;
if e ∈ TempDel then Remove e from TempDel;
else Add e to TempAdd

end
i← Next[i];

end

y ←Query for Nearest Marked vertex of vx on TTr;

foreach edge e ∈ TempAdd do Cut(e) on TTr foreach edge e ∈ TempDel
do Link(e) on TTr return y;

4.6.2 Analysis

Marking and Unmarking a vertex in a top tree takes O(logn) time as explained in

Section 2.3.4. Since we have to update top trees of S rooted vertices, performing

mark/unmark takes O(Slogn) time.

Query of a vertex performs O(n/S) Link and Cut operations along with a Query

operation on a top tree taking O(logn) time per operation, hence O(nlogn/S) time.

Had we made a temporary copy of the top tree and performed the updates on it
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because the size of top tree is O(n) hence it will be copied in O(n) time. Where as

modifying and reverting it will take O(n/S) steps each of O(logn) time.

Hence we can now state the following theorem.

Theorem 4.6.1. Given an embedded planar graph G having n vertices with infinite

face f∞ with d vertices and a parameter S ∈ [1, d] we can make a data structure

Dnmcv in O(nS) time and using O(nS) space which can allow marking and unmark-

ing of any vertex in the graph in O(Slogn) time and query of nearest marked vertex

on vertices of f∞ in O(nlogn/S) time.

Choosing S as
√
n for balancing the time complexity for queries and updates

leads to following result:

Corollary 4.6.2. Given an embedded planar graph G having n vertices with infinite

face f∞ with d vertices, we can make a data structure Dnmcv in O(n
√
n) time and

using O(n
√
n) space which can allow marking and unmarking of any vertex in the

graph in O(
√
nlogn) time and query of nearest marked vertex on vertices of f∞ in

O(
√
nlogn) time.

4.7 k Nearest Marked Vertices in Planar Graphs

This is an extension of previous result where instead of querying for one nearest

marked vertex we can query for k nearest marked vertices. To answer a query in a

top tree, we first build the top tree on the query vertex in O(nlogn/S) time and then

query for nearest marked vertex in it in O(logn) time. Underlying idea involved is

saving the time to construct the top tree separately for each of the k queries. For

a single query we derive the top tree for the query vertex from the top tree on

preceding rooted vertex. For every next query we don’t need to construct the tree

again, hence query can be done efficiently. It uses the same data structure Dnmv

and update algorithm, with just a variation in the query algorithm.

In Algorithm4.3, after the first query we unmark the nearest marked vertex.

Then on querying again it reports the next nearest marked vertex. This process of

unmark and query is repeated for each query. Each nearest marked vertex is stored

in a list NMk, which is later also used to restore the top tree by marking the vertices

in NMk back again.

The analysis of the result is same as that of previous result, with an exception

of the query algorithm. Since the query adds O(k) mark and unmark operations on

the top tree T , it uses extra O(klogn) time. Hence the query of k nearest marked

vertices can be performed in O((n/S + k)logn) time. Note that it does not change

the bound for k = 1 which remains to be O(nlogn/S).

Hence we can now state the following theorem
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Theorem 4.7.1. Given an embedded planar graph G having n vertices with infinite

face f∞ with d vertices and a parameter S ∈ [1, d], we can make a data structure

Dnmcv in O(nS) time and using O(nS) space which can allow marking and unmark-

ing of any vertex in the graph in O(Slogn) time and supporting query of k nearest

marked vertices from a vertex on f∞ in O((n/S + k)logn) time.

Choosing S as
√
n for for balancing the time complexity for queries and updates

leads to following result:

Corollary 4.7.2. Given an embedded planar graph G having n vertices with infinite

face f∞ with d vertices, we can make a data structure Dnmcv in O(n
√
n) time and

using O(n
√
n) space which can allow marking and unmarking of any vertex in the

graph in O(
√
nlogn) time supporting query of k nearest marked vertices from a vertex

on infinite face f∞ in O((
√
n + k)logn) time.

Algorithm 4.3: Query a vertex vx on f∞ for k nearest marked vertices

Input : Planar Graph embedding G with infinite face f∞ and a vertex vx
on f∞ to be queried and a constant k ≤ n with structure Dnmv on
G

Output: NMV : k Nearest Marked Vertices of the vertex vx

r ←Binary Search of largest index less than or equal to x in RV ;
TempAdd← NULL, TempDel← NULL

for i← Nextr where i ≤ x do
foreach edge e ∈ EdgDeli do

Cut(e) on TTr;
if e ∈ TempAdd then Remove e from TempAdd;
else Add e to TempDel

end
foreach edge e ∈ EdgAddi do

Link(e) on TTr;
if e ∈ TempDel then Remove e from TempDel;
else Add e to TempAdd

end
i← Nexti;

end

for i = 1 to k do
NMVi ← Query for Nearest Marked vertex of vx on TTr;
Unmark NMVi on TTr;

end
for i = 1 to k do Mark NMVi on TTr;

foreach edge e ∈ TempAdd do Cut(e) on TTr foreach edge e ∈ TempDel
do Link(e) on TTr
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Conclusions

5.1 Impact

The two problems we solved, explore the applications of top trees on planar graphs.

The possible implementation of top trees is described by Alstrup et. al[1] and

Werneck[2]. The top tree on a graph G having n vertices can be made in O(n) time

using O(n) space. They have implemented each of the three update operations that

change the structure of top tree, namely Link, Cut and Expose in O(logn) time.

Expose operation on a cluster path, takes two vertices(ends of cluster path) as input

and exposes them to the root cluster, taking O(logn) time for each vertex.

We describe the first attempt to make a generalised data structure similar to top

trees for planar graphs. Our solution performs all the external operations using time

same as that of corresponding operations in top trees. Only exception is Expose

on a cycle or cut of size d that is performed in O(dlogn) time. Note that the size

of input for Expose is d, hence any algorithm for this problem will require Ω(d)

time. Also expose operation of top trees takes O(logn) time for each of the two

boundary vertices. Similarly Expose of Dtt requires O(logn) time for each edge on

the enclosing cycle or cut of size d. Hence the bounds achieved for implementing

Dtt are competitive with the current state of the art. Trivially both the applications

can be solved in O(n) time, hence our solution performs much better if d very small

as compared to n.

Our second problem deals with nearest marked vertex problem on planar graphs.

The problem of nearest marked vertex on planar graphs is much more complex as

compared to trees, also it is fairly less complex than that on general graphs. For

trees, Alstrup et al[1] solved the problem taking O(logn) time per update and query

operations. For a general graph having n vertices and m edges, they present a 2k−1

approximate solution using O(kn1+1/k) space data structure built in O(kmn1/klogn)

expected time for any positive integer parameter k, supporting both queries and

updates in O(kn1/klogn) time.

Our balanced solution for planar graph requires O(
√
nlogn) time per update or

45
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query operation with a limit on the query vertices. Using same bound the solution

by Alstrup et. al[1] for general graphs, gives 3 approximation of the solution. Also

our initial approaches to solve the problem on planar graphs performs either update

or query in O(1) time, taking atleast O(dlogn) time to solve the other operation. We

can match bounds of both these solutions at the extreme values of our parameter

S. Hence the bounds achieved for our final solution are competitive with the state

of the art and direct approaches to solve the problem.

5.2 Limitations

The major limitation of the data structure Dtt is that it does not handle path

problems. It is because all the edges are divided into two top tree Tp and Td, and

even though top trees can easily handle path problems, not all paths are covered by

these top trees.

In case of faces using Td, the tree contractions are not logically meaningful. The

edges in the dual graph that are contracted are not adjacent, leaving limited scope

of its application. In particular applications that are dependent on combining the

data stored on clusters based on the relative location of clusters are not supported.

Also Dtt does not support fully dynamic updates, that is addition and deletion

of edges. The main problem is that the top tree on dual graph is made using faces

of the primal graph. And top tree does not support addition or deletion of vertices.

Addition and deletion of edges leads to split and merge in faces, which is not sup-

ported by the underlying structure.

Main limitation of our solution for nearest marked vertex problem in planar graphs

is that it answers queries for only vertices located on the outer face of the planar

graph. Even though we can Mark/Unmark any vertex the query is limited to the

vertices of the infinite face only.

Our algorithm doesn’t cover it mainly because at the core of our result we have

used MSSP algorithm by Klien [3]. Primarily we need a top tree on the shortest

path tree of the vertex to be queried. But since the shortest path trees are not made

on inner vertices we cannot make them easily with a limit on edge changes.

Secondly our algorithm is not fully dynamic and hence does not support updates

as Link or Cut. Again since such updates were not handled by MSSP algorithm[3],

we were not able to handle them.

5.3 Future Work

The base clusters in top trees are based on edges. It seems the data structure

Dtt may become more useful if the base clusters can be based on vertices or faces.
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Hence, exploring use of topology trees at the heart of this data structure instead of

top trees may lead to significant results. Also fully dynamic updates on the graph

can be supported if the faces are not represented as vertices by using top trees.

In the nearest marked vertex problem, main limitation is the limit on vertices that

can be queried. Klien [3] have tried to overcome the problem of limit on queries using

structures called Jordan Curves. It allows recursively applying the same algorithm

to find the shortest path distance between any two vertices. It may be interesting to

explore its use here. Also the algorithm may be extended to support fully dynamic

updates i.e. Link and cut.
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