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Abstract

In most of the graph applications in the real world, we deal with graphs that undergo

structural changes in the form of insertion or deletion of vertices or edges. For any ar-

bitrary online sequence of graph updates, a dynamic graph algorithm has to report the

solution of the problem after every update in the graph. This can trivially be achieved by

using the best static algorithm to recompute the solution from scratch after each update.

Thus, the objective is to update the solution of the problem much faster than the time

required to recompute the solution from scratch. A dynamic graph algorithm is called fully

dynamic if it handles both insertion and deletion updates. A partially dynamic algorithm

handles either only insertion updates (incremental) or only deletion updates (decremen-

tal). Another model of practical significance is the fault tolerant model, where the aim is

to build a compact data structure for a given problem, which can be used to compute the

solution efficiently after any set of edge or vertex failures. Our work focuses on dynamic

graph algorithms for maintaining Depth First Search trees, wherein we developed both

theoretically and empirically efficient algorithms.

Depth First Search (DFS) tree is one of the most popular graph data structures having

innumerable applications in solving graph problems. Despite its undeniable significance

in the area of graph algorithms, its surprisingly limited impact in dynamic graph prob-

lems seemed unsettling. The only non-trivial algorithm then known, was by Franciosa et

al. [IPL97] dating back to mid 90s, which was restricted to incremental setting in directed

acyclic graphs. Recently, Baswana and Choudhary [MFCS15] presented a randomized

decremental algorithm for directed acyclic graphs. Moreover, most of the problems that

are trivially solvable by a DFS tree in the static setting, did not employ any form of DFS

tree in the dynamic setting. Several such problems including connectivity, reachability,

strong connectivity and their variants, are some of the most studied problems in the area

of dynamic graph algorithms.

We first studied the problem of maintaining a DFS tree in the incremental setting.

We developed an extremely simple algorithm [ICALP14] for incrementally maintaining a

DFS tree of an undirected graph. Our algorithm is essentially optimal for dense graphs.
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However, in all the existing algorithms for maintaining a DFS tree in the dynamic setting,

only amortized guarantees in the update time were achieved. In the worst case, the time

required to update the solution was no better than the time required to recompute the

solution from scratch. Thus, in all the existing solutions an inherent difficulty to achieve

a better worst case update time was noticed. We were able to break this barrier for

undirected graphs [SODA16] in fault tolerant, incremental and fully dynamic settings. Our

fault tolerant (up to constant failures) and incremental algorithms require nearly optimal

time (up to poly log n factors) to update the DFS tree of the graph. Moreover, our fully

dynamic algorithm also opened the gateways for applicability of DFS trees in other well

studied dynamic graph problems such as dynamic subgraph connectivity and its variants.

Our focus then shifted to the study of dynamic DFS in other more practical models of

computation, where we were able to design nearly optimal algorithms (up to poly log n

factors) for maintaining a DFS tree of an undirected graph in the parallel, semi-streaming

and distributed model [SPAA17] Finally, we carried out an exhaustive experimental and

theoretical evaluation [SODA18] of the existing algorithms for maintaining incremental

DFS in random graphs and real world graphs. This led us to develop extremely simple

algorithms which performed both theoretically equivalent and experimentally superior to

the existing algorithms on dense random graphs. Even for real graphs, we propose new

algorithms that match the performance of the state-of-the-art algorithms. Finally, we

present tradeoffs to choose the most suitable algorithm for any given dynamic graph.

Hence, we are able to successfully address the problem of dynamic DFS from several di-

rections: ranging from theoretical to experimental, sequential to parallel/distributed/semi-

streaming, and near optimal amortized to significant worst case guarantees.
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In most of the graph applications in the real world, we deal with graphs that undergo

structural changes in the form of insertion or deletion of vertices or edges. For any ar-

bitrary online sequence of graph updates, a dynamic graph algorithm has to report the

solution of the problem after every update in the graph. This can trivially be achieved by

using the best static algorithm to recompute the solution from scratch after each update.

Thus, the objective is to update the solution of the problem much faster than the time

required to recompute the solution from scratch. A dynamic graph algorithm is called fully

dynamic if it handles both insertion and deletion updates. A partially dynamic algorithm

handles either only insertion updates (incremental) or only deletion updates (decremen-

tal). Another model of practical significance is the fault tolerant model, where the aim is

to build a compact data structure for a given problem, which can be used to compute the

solution efficiently after any set of edge or vertex failures.

Depth First Search (DFS) tree is one of the most popular graph data structures having

innumerable applications in solving graph problems. Despite its undeniable significance

in the area of graph algorithms, its surprisingly limited impact in dynamic graph prob-

lems seemed unsettling. The only non-trivial algorithm then known, was by Franciosa et

al. [FGN97] dating back to mid 90s, which was restricted to incremental setting in di-

rected acyclic graphs. Recently, Baswana and Choudhary [BC15] presented a randomized

decremental algorithm for directed acyclic graphs achieving similar bounds (up to Õ(1)

factors)1 as in [FGN97]. Moreover, most of the problems that are trivially solvable by a

1 Õ() : Hides the factors poly-logarithmic in input size, i.e., O(Xpoly logn) = Õ(X) for input size n.
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DFS tree in the static setting, did not employ any form of DFS tree in the dynamic setting.

Several such problems including connectivity, reachability, strong connectivity and their

variants, are some of the most studied problems in the area of dynamic graph algorithms.

In this thesis, we study Depth First Search trees in the dynamic setting, wherein we

developed both theoretically and empirically efficient algorithms. Our contributions can

be broadly classified in the following domains.

Dynamic DFS in Undirected Graphs

As described earlier, in any dynamic setting, a trivial algorithm can use the classical static

algorithm [Tar72] to compute the DFS tree from scratch after every update. We improve

this trivial algorithm in the following dynamic environments.

Incremental Algorithms

Franciosa et al. [FGN97] stated the maintenance of a DFS tree incrementally in an undi-

rected graph as an open problem. We presented an incremental algorithm [BK14, BK17]

to maintain a DFS tree of an undirected graph under edge insertions, which is optimal

for dense graphs. Moreover, it is also very simple and employs only basic data structures,

making it ideal for practical use.

Despite having significant amortized bounds, in the worst case, none of these algorithms

guarantee an update time any better than the trivial recomputation from scratch. Our

later work [BCCK16] presented an algorithm for incrementally maintaining a DFS tree

for an undirected graph in nearly optimal (up to Õ(1) factors) worst case update time.

Fault tolerant Algorithm

In the fault tolerant model, no non-trivial algorithm was previously known for DFS trees.

We presented a fault tolerant algorithm [BCCK16] to recompute the DFS tree after any k

failures in the graph. Moreover, it also handles vertex updates in addition to edge updates

using the same bounds. For small values of k (up to Õ(1)), this algorithm is also shown

to be optimal up to Õ(1) factors.

Fully Dynamic Algorithm

In the fully dynamic setting, again no non-trivial algorithm was previously known for

maintaining a DFS tree. Further, the dynamic DFS algorithms described above did not

have any applications in solving dynamic graph problems, unlike DFS in the static setting.
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We presented an algorithm [BCCK16] to maintain a DFS tree for any sequence of

edge or vertex updates in a fully dynamic environment. Moreover, our algorithm also

seamlessly provides new, simple, and efficient algorithms for several well studied dynamic

graph problems such as connectivity [Dua10, CPR11], biconnectivity [Hen00], and 2-

edge connectivity [HdLT01] in the dynamic subgraph model. Our result improves the

deterministic worst case bounds for these problems under vertex updates. Recall that in

the static setting these problems are easily solvable using a DFS tree.

Extensions to other models of computation

Major applications of dynamic graphs in the real world involve a huge amount of data,

which not only makes recomputing the solution after every update infeasible, but also

solving it on a single sequential machine impractical. Thus, in the past three decades a

lot of work addressed dynamic graph problems on more practical computation models as

parallel, semi-streaming and distributed (or dynamic networks) models. However, despite

its significance, DFS trees have only been studied on these models in the static setting.

Parallel Model

Aggarwal et al. [AAK90] proved that general DFS tree problem is in RNC2. However, the

fastest deterministic algorithm for computing general DFS tree in parallel takes polynomial

time [AAK90, GPV93] even for undirected graphs. Whether the DFS tree problem is in

NC, is still a long standing open problem even for undirected graphs.

We presented the first parallel dynamic algorithms [Kha17a] for maintaining a DFS

tree for undirected graphs, which exponentially improves the deterministic update time

over trivial re-computation after every update. Our fully dynamic algorithm maintains a

DFS tree in Õ(1) time per edge/vertex update using one processor per edge of the graph.

Further, using only one processor per vertex of the graph, our fault tolerant algorithm

computes a DFS tree after any set of k edge/vertex updates in Õ(1) time (for constant

k). Both our algorithms are time optimal (up to Õ(1) factors) and also establish that

dynamic DFS for undirected graphs is in class NC.

Streaming Model

In the semi-streaming model, the input graph is accessed in the form of a stream of edges

over multiple passes, where the algorithm is allowed only linear space. A DFS tree can

2 NC is the class of problems solvable using nc processors in parallel in Õ(1) time, for any constant c.
The class RNC extends NC to allow access to randomness.
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be trivially computed using one pass per vertex, where the pass adds the vertex to the

tree. However, computing the DFS tree in Õ(1) passes is considered hard [FHLT15] and

it remains an open problem to even compute it in sublinear number of passes.

In the dynamic setting, after every graph update the algorithm is allowed multiple

passes over the graph to update the DFS tree. We presented the first dynamic semi-

streaming algorithm [Kha17a] for maintaining a DFS tree of an undirected graph, which

exponentially improves the number of passes required over trivial re-computation after

every update. Our algorithm maintains a fully dynamic DFS tree using Õ(1) passes over

the input graph for every edge/vertex update, which is optimal (up to Õ(1) factors).

Distributed model

Computing a DFS tree in the distributed model was widely studied in 1980’s and 1990’s.

A DFS tree can be computed in linear number of rounds, with different tradeoffs between

the number of messages passed and the size of each message.

We presented an algorithm [Kha17a] which maintains a DFS tree of an undirected

graph after any edge/vertex update using rounds of the order of the diameter of the

graph. Despite using linear message size with higher number of messages, it improves the

number of rounds required for the classes of graphs with sublinear diameter.

Empirical analysis of Incremental DFS algorithms

Having known several algorithms for maintaining incremental DFS [FGN97][BK17, BCCK16],

for practical use it is necessary to evaluate their average performance and perform their

empirical analysis on real inputs. After all, the ideal goal is to design an algorithm with

theoretical guarantee of efficiency as well as efficient performance in practice. Thus, such

a study bridges the gap between theory and practice.

We presented an experimental analysis [BGK18] of various algorithms for incremental

DFS. Both our algorithm [BK17] and that of Franciosa et al. [FGN97], perform much bet-

ter than their stated bounds on random graphs. We investigated the reasons behind this

superior performance and theoretically proved probabilistic bounds which almost matched

(up to Õ(1) factors) their empirical performance on dense random graphs. Using this in-

sight, we presented an extremely simple algorithm for incremental DFS that works for

both undirected and directed graphs. This algorithm theoretically matches and experi-

mentally outperforms the state-of-the-art algorithms in dense random graphs. Further,

it can also be used as a single-pass semi-streaming algorithm for incremental DFS and

strong connectivity for random graphs.
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Even for real graphs, both our algorithm [BK17] and that of Franciosa et al. [FGN97],

perform much better than their stated bounds. Here again, we propose new algorithms

that match the performance of the state-of-the-art algorithms. Finally, we present trade-

offs to choose the most suitable algorithm for any given dynamic graph.

Hence, we are able to successfully address the problem of dynamic DFS from several di-

rections: ranging from theoretical to experimental, sequential to parallel/distributed/semi-

streaming, and near optimal amortized to significant worst case guarantees.
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Chapter 1

Introduction

Most of the data in the real world that deals with complex relationships, is represented
using Graphs. Various algorithms are thus designed to process these graphs and an-
swer various queries on them. These queries vary from merely answering if two nodes
are connected (connectivity), to measuring the shortest distance/path between two nodes
(shortest paths), to even building complex structures for these graphs including mini-
mum weight spanning trees (minimum spanning trees), maximum concurrent transport
routes (maximum flow) etc. If the underlying input graph is not subjected to any change
while processing these queries, the corresponding algorithms are referred as static algo-
rithms. On the other hand, if the underlying input graph is subject to any changes, the
corresponding algorithms are referred as dynamic algorithms. In this thesis, we develop
dynamic graph algorithms for one of the most fundamental data structures that is used
for solving graph problems in the static setting: the Depth First Search trees. We shall
now formalize the notion of dynamic graph algorithms and briefly describe the motivation,
goals, and the state of the art for various graphs problems studied under this model.

1.1 Dynamic Graph Algorithms

Most of the graph applications in real world deal with graphs that keep changing with
time. These changes/updates can be in the form of insertion or deletion of vertices or
edges. An algorithmic graph problem is modeled in a dynamic environment as follows.
For any arbitrary online sequence of updates on the graph, the objective is to update the
solution of the problem efficiently after each update. To achieve this aim, we maintain
some clever data structure for the problem on the current graph, such that the update time,
i.e., time taken to compute the solution after an update in the graph, is much smaller than
the time required by the best static algorithm to compute the solution from scratch.

Dynamic graph algorithms also have significant impact in other areas of theoretical
interests. They are often used as an intermediate routine in solving some graph problems in
the static setting. A classical example is that of Kruskal’s algorithm [Kru56] for computing
Minimum Spanning Trees, which uses a disjoint set union data structure. It is essentially
a data structure for answering connectivity queries under insertion of edges. Moreover,
the complexity of dynamic graph problems are also known to be strongly related to the
complexity of the corresponding problems in the parallel setting. In the mid 80s and early
90s, several studies [Rei87, MSVT94] reported the relationship between the hardness of a
problem in the parallel and dynamic settings.

1
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1.1.1 Types of Dynamic Graph Algorithms

We now describe the different types of dynamic graphs algorithms. A dynamic graph
algorithm is said to be fully dynamic if it handles both insertion as well as deletion updates.
A partially dynamic algorithm is said to be incremental or decremental if it handles only
insertion or only deletion updates respectively.

Another, and more restricted, variant of a dynamic environment is the fault tolerant
environment. Here the aim is to build a compact data structure for a given problem,
that is resilient to failure of vertices/edges, and can efficiently report the solution of the
problem for any given set of failures. Typically the size of this set of failures is assumed to
be much smaller than the number of vertices or edges in the graph. In this model, update
time often refers to the processing time required by the data structure after a given set of
failures, such that each query can be answered efficiently.

1.1.2 State of the art

We now briefly describe some important problems studied in the dynamic environment.

Connectivity

Dynamic connectivity is one of the most studied problem in the area of dynamic graph
algorithms, which can be described as follows. Given an undirected graph G = (V,E)
undergoing updates, the goal is to efficiently answer the following query: For any u, v ∈ V ,
is u connected to v in the graph G?

In the fully dynamic setting, the best known deterministic algorithm with worst case
guarantees requires O(

√
n) time per update with O(1) query time. This result was an

improvement over Frederickson’s [Fre85] O(
√
m) update time data structure, using the

sparsification technique by Eppstein et al. [EGIN97]. Recently, this result was mildly

improved by Kejlberg-Rasmussen et al. [KKPT16] to require O(
√
n (log logn)2

logn ) update time.

However, there do exist faster algorithms if we settle for amortized guarantees or allow
randomization. In a seminal paper, Henzinger and King [HK99] presented an algorithm
to maintain fully dynamic connectivity in expected O(log3 n) amortized update time with
O(log n/ log log n) query time. This was later improved to expected O(log n(log log n)3)
update time with O(log n/ log log log n) query time by Thorup [Tho00], and to expected
O(log n(log log n)2) update time with same query time by Huang et al. [HHKP17]. On
the other hand, the best deterministic algorithm with amortized guarantees is by Holm et
al. [HdLT01] which takes O(log2 n) amortized update time and O(log n/ log logn) query
time. This was later improved by Wulff-Nilsen [Wul13] to O(log2 n/ log logn) update time
with same query time. Allowing randomization also improves the worst case bound of
O(
√
n). In another seminal paper, Kapron et al. [KKM13] presented a Monte-Carlo algo-

rithm1 requiring O(log5 n) update time which correctly answers the queries with high prob-
ability in O(log n/ log log n) time, assuming an oblivious adversary 2. Recently, Nanongkai
and Saranurak [NS17] presented a Monte-Carlo algorithm for adaptive adversary 3 re-

1A randomized algorithm in which answers to the queries can be incorrect with some probability, but
have deterministic guarantee on the running time is referred as a Monte-Carlo algorithm.

2An oblivious adversary does not have access to the previous random choices made by the algorithm.
3 An adaptive adversary can adapt based on the previous random choices made by the algorithm.
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quiring expected O(n0.4+o(1)) update time. They also presented a Las Vegas algorithm4

requiring O(n0.49306) worst case update time with high probability. Independently, Wulff-
Nilsen [Wul17] also presented a Las Vegas algorithm requiring O(n0.5−c) worst case update
time with high probability, for some constant c > 0.

In case we restrict ourselves to partially dynamic environment, we can achieve better
bounds as follows. In the incremental setting, the disjoint set union data structure [Tar75,
TvL84] can be used to answer the connectivity queries taking total O(mα(m,n)) time for
queries and insertion of m edges, where α(m,n) is the inverse Ackermann’s function.
In the decremental setting, the only known algorithm which performs better than the
corresponding fully dynamic algorithm is by Thorup [Tho99]. This algorithm requires
expected O(m log(n2/m)) + n log3 n(log log n)2) time for deletion of m edges, where each
query can be answered in O(1) time. This bound is better than that of [Tho00] for
m = Ω(n log2 n).

Apart from these upper bounds, a lot of work has also been done to prove lower bounds
for the problem. For incrementally maintaining connectivity information, Tarjan [Tar79]
and La Poutré [Pou96] independently proved lower bounds of Ω(α(m,n)) per update on
a pointer machine. Henzinger and Fredman [HF98] established a lower bound for fully
dynamic connectivity requiring Ω(log n/ log logn) time per update in the RAM model 5.
This was later improved by Demaine and Patrascu [PD06] to Ω(log n) time per update in
the cell-probe model6.

In the fault tolerant setting, the algorithms for fully dynamic connectivity having worst
case bounds can also be used for solving fault tolerant connectivity. Additionally, Pa-
trascu and Thorup [PT07] presented a fault tolerant connectivity structure which takes
O(k log5/2 n log log n) update time after any set of k edge failures to answer each connectiv-
ity query in O(log log n), using polynomial preprocessing time. This result was improved
by Duan and Pettie [DP10] for k = o(log5/3 n), requiring O(k2 log logn) update time using
O(min{ log k

log logn ,
log logn

log log logn}) query time. They also presented a vertex fault tolerant con-
nectivity structure for any k ≤ kmax failures, which offers a tradeoff between update time
and size of the structure with a query time of O(k). For a constant parameter c, their data

structure requires O(k
1−2/c
max mn1/c−1/(c log 2kmax) log2 n) space and O(k2c+4 log2 n log log n)

update time. They recently improved this result [DP17] to O(mkmax log n) space and
O(d3 log3 n) update time. Further, allowing randomization they also presented a Monte
Carlo algorithm improving the space to O(m log4 n) and the update time O(d2 log5 n).

Some other problems that are closely related to connectivity are minimum spanning
trees, 2-edge connectivity and biconnectivity. Many of the results for dynamic connectivity
are easily extendible to minimum spanning trees [Fre85, EGIN97, HdLT01, NS17, Wul17],
2-edge connectivity [Fre85, EGIN97, HK99, Tho99, Tho00, HdLT01] and biconnectiv-
ity [HK99, Tho00, HdLT01] at the expense of extra O(poly log n) factors in the update
time. Additionally, for maintaining fully dynamic minimum spanning forest, Holm et
al. [HRW15] mildly improved the amortized update time of [HdLT01] from O(log4 n) to
O(log4 n log log log n/ log log n). For dynamic biconnectivity, Henzinger [Hen00] also pre-
sented a fully dynamic algorithm that requires O(

√
n) update time and O(1) query time.

4A randomized algorithm which always answers the queries correctly, but has only expected or high
probability guarantees on the running time is referred as a Las Vegas algorithm.

5Random Access Machine (RAM) model allows random access of memory locations and integer opera-
tions in constant time.

6Cell probe model measures computational cost only in terms of the number of memory cells accessed.
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Another model in which dynamic connectivity has been studied is the dynamic sub-
graph model described as follows. Given an undirected graph, where the status of any
vertex can be switched between active and inactive in an update. For any online sequence
of updates interspersed with queries, the goal is to efficiently answer each queries on the
subgraph induced by the active vertices. This problem can be solved by using fully dy-
namic data structures that answer the corresponding queries under an online sequence of
edge updates. This is because switching the state of a vertex is equivalent to O(n) edge
updates. Chan [Cha06] introduced this problem and showed that it can be solved using
FMM (fast matrix multiplication) in O(m0.94) amortized update time and Õ(m1/3) query
time. Later, Chan et al. [CPR08] presented a new algorithm that improves the amor-
tized update time to Õ(m2/3). Further, they also established a lower bound of Ω(

√
m)

on the update time. Duan [Dua10] presented an algorithm with O(m4/5) update time
and O(m1/5) query time, improving the worst case bounds for the problem. Recently,
Duan and Zhang [DZ17] presented a randomized Monte-Carlo algorithm requires Õ(m3/4)
update time and answers a query correctly in Õ(m1/4) time with high probability. In-
terestingly, most of these algorithm demonstrate a tradeoff between the update time and
query time, where the product of the two parameters as Ω(m). Henzinger et al. [HKNS15]
proved a matching conditional lower bound on this product using the OMv conjecture 7.

Reachability

For directed graphs, the problem equivalent to dynamic connectivity is dynamic reacha-
bility, which can be described as follows. Given a graph G = (V,E) undergoing updates,
the goal is to efficiently answer the following query: For any u, v ∈ V , is v reachable from
u? In other words, does there exist a path from u to v in the graph G? The problem is
addressed in two forms, namely reachability, from a single source; and transitive closure,
among all possible pairs of vertices. See [DI06a, Mar17] for surveys.

In the fully dynamic setting, transitive closure can be maintained by a determinis-
tic algorithm using O(n2) amortized update time and a constant query time. The first
such algorithm was designed by Demetrescu and Italiano [DI08]. Later, Roditty [Rod08]
presented a simpler algorithm having same query and update time with a smaller pre-
processing time. For a data structure maintaining a reachability matrix this is optimal,
since a single update may change O(n2) entries of the matrix. For randomized algorithms,
Sankowski [San04] later improved it to worst case O(n2) update time with constant query
time using a Monte-Carlo algorithm.

However, if we allow non-constant query time, there are different tradeoffs between
update time and query time described as follows. Sankowski [San04] generalized the
results of [DI05] to present two Monte Carlo algorithms requiring O(n1.575) update time
with O(n0.575) query time, and O(n1.495) update with O(n1.495) query time respectively.
Roditty and Zwick [RZ08] improved the results of [HK95], to present a deterministic
algorithm having O(m

√
n) amortized update time with worst case O(

√
n) query time,

and a randomized Las Vegas algorithm requiring amortized O(m0.58n) update time and
worst case O(m0.43) update time with high probability. Later, Roditty and Zwick [RZ16]
also presented a deterministic algorithm requiring amortized O(m+ n log n) update time
and worst case O(n) query time.

7Online Matrix Vector (OMv) multiplication conjecture states that no algorithm can compute a sequence
of multiplications of the form M.v, of an online sequence of n vectors v (1× n) with a fixed matrix M of
size n× n, in O(n3−ε) total time for any ε > 0
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Again, restricting to partially dynamic environments we get better bounds as follows.
Single source reachability can be trivially maintained in the incremental setting using O(1)
amortized time per update [Ita86]. In case of transitive closure, correspondingly the incre-
mental algorithm takes O(n) amortized bound per update [Ita86, LPvL88]. For bounded
degree graphs, this bound was improved to O(md) total time by Yellin [Yel93], where d is
the maximum out degree of a vertex in the final graph. In the decremental setting, single
source reachability can be maintained by the classical result of Even and Shiloach [ES81]
requiring O(n) amortized update time. However, if we allow randomization decremental
reachability can be maintained using a Monte Carlo algorithm by Chechik et al. [CHI+16]
which requires O(

√
n log n) amortized update time, improving upon [HKN14b, HKN15].

For transitive closure, the fastest algorithm is by Lacki [Lac13] requiring O(n) amortized
time per update with constant query time, improving upon [HK95, RZ08]. However,
in the worst case [Lac13] may require O(mn) time per update, which was improved by
Roditty [Rod13] to O(m log n) keeping the same total update time as [Lac13]. All these
algorithms require constant query time.

A related problem is that of maintaining dynamic strongly connected components , and
answering strong connectivity queries, which are described as follows: Given a directed
graph, for any two vertices u, v ∈ V , do they belong to the same strongly connected compo-
nent. Many algorithms for dynamic reachability [Lac13, RZ08, HKN14b, HKN15, CHI+16]
also maintain strongly connected components allowing strong connectivity queries using
the same bounds.

The long history of upper bounds for this problem is also complemented by some
interesting lower bounds. Abboud and Williams [AW14] establishes a conditional lower
bound implying the impossibility of a combinatorial algorithm solving decremental s − t
reachability with worst case O(n2−ε) (for any ε > 0) query and update time, using BMM
conjecture8. Removing the restriction of being a combinatorial algorithm, Henzinger et
al. [HKN15] showed that no worst case O(n1−ε) update time and O(n2−ε) query time
algorithm is possible under the OMv Conjecture.

In the fault tolerant setting, the only known data structures that handle multiple fail-
ures is by Baswana et al. [BCR16, BCR17]. For answering single source reachability and
strong connectivity queries [BCR16] in O(1) time, their algorithm require O(2kn) update
time after k edge/vertex failures in the graph. For reporting the strongly connected compo-
nents of a graph after k edge/vertex failures their algorithm [BCR17] requires O(2kn log2 n)
time.

Shortest Paths

Dynamic maintenance of shortest paths is another problem that has been extensively
studied over the past decades. Given a graph G = (V,E) undergoing updates, the goal is
to efficiently answer the following query: For any s, t ∈ V , what is the shortest path from
s to t in G? In case the algorithm allows such queries among all pairs of vertices in V , the
problem is referred to as all pairs shortest paths (APSP). However, if the query restricts
the s to be a fixed vertex in V , the problem is called single source shortest path (SSSP).
Further, if the graph G is unweighted, the shortest path tree from a given source is also
called as the breadth first search (BFS) tree of the graph. See [DI06a, Mar17] for surveys.

8Boolean Matrix Multiplication (BMM) conjecture states that no combinatorial algorithm can compute
multiplication of two n× n matrices using O(n3−ε) time, for any ε > 0
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In the fully dynamic setting, maintenance of APSP is first studied by King [Kin99],
who presented an algorithm requiring Õ(n2.5

√
W ) amortized update time, where W is the

maximum weight of an edge. This was improved to nearly quadratic amortized update
time of Õ(n2 log3 n) time in the seminal work by Demetrescu and Italiano [DI04], which
was later improved by a logarithmic factor by Thorup [Tho04]. Further, Thorup [Tho05]
presented an algorithm having worst update time of Õ(n2.75), which was recently improved
by some logarithmic factors by Abraham et al. [ACK17]. They also improved the bound
using randomization to give a Monte-Carlo algorithm with worst case update time of
Õ(n2+1/3). If we allow non-constant query time, Roditty and Zwick [RZ11] also presented
a Monte-Carlo algorithm requiring Õ(m

√
n) amortized update time with O(n3/4) query

time. Using Fast Matrix Multiplication (FMM), Sankowski [San05] presented a Las Vegas
algorithm requiring worst case O(n1.932) update time and O(n1.288) query time. Several
results have also addressed the approximate maintenance of APSP [Kin99, Ber09].

In the incremental setting, the fastest APSP algorithm is by Ausiello et al. [AIMN91]
requiring total Õ(n3W ) update time under edge insertions , where W is the largest edge
weight. In the decremental setting, the classical algorithm by Even and Shiloach [ES81]
provides an algorithm requiring O(mn2) total update time. This was improved by Deme-
trescu and Italiano using randomization giving two algorithms requiring total Õ(n3) and
Õ(n3S) update time respectively for vertex [DI06b] and edge updates [DI04], where S
is the number of different edge weights. For maintenance of SSSP in partially dynamic
environment, the fastest algorithm is the classical result by Even and Shiloach [ES81]
requiring total update time of O(mn) for unweighted graphs. For positively weighted
graphs, King [Kin99] extended the result requiring total update time of O(mnW ), where
W is the maximum weight of an edge. Later, Roditty and Zwick [RZ11] proved a matching
conditional lower bound to [ES81] for any combinatorial algorithm maintaining partially
dynamic SSSP using APSP conjecture 9. This conditional lower bound was later gen-
eralized to even non-combinatorial algorithms by Henzinger et al. [HKNS15] using OMv
conjecture. Subsequently, several results studied the partially dynamic approximate main-
tenance of SSSP in [BR11, HKN14a, BC17b, Ber17] and APSP in [Ber16, HKN16].

In the fault tolerant model, data structures for distance queries were first studied
by Demetrescu et al. [DTCR08], handling a single failure. Later, its preprocessing time
was improved [BK09], and it was extended to dual failures [DP09]. All these algorithms
require Õ(n2) space and Õ(1) query time. It was generalized to handle k failures using
Fast Matrix Multiplication (FMM) resulting in a super-quadratic sized data structure by
Weimann and Yuster [WY13]. Later, their sub-quadratic query time was improved to sub-
linear by Grandoni and Williams [GW12]. For SSSP, fault tolerant subgraphs have been
studied which preserve the shortest paths from the given source after a set of failures. For
weighted graphs, it was shown [DTCR08] that for even a single failure we require Ω(n2)
edges. However, for unweighted graphs (BFS trees) Parter and Peleg [PP13] presented
the construction of a sub-quadratic sized fault tolerant subgraph, avoiding a single failure
with a matching lower bound. This was extended to dual failures [Par15, GK17], again

with matching lower bounds. Further, Parter [Par15] proved a lower bound of Ω(n2−
1
k+1 )

edges for a k fault tolerant subgraph. Recently, construction of the first k fault tolerant

subgraph was presented by Bodwin et al. [BGPW17], requiring O(n
2− 1

2k ) edges.

9All pairs shortest paths (APSP) conjecture states that no algorithm can compute all pair shortest
paths in O(n3−ε) total time for any ε > 0
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1.2 Other Models of Computation

Major applications of dynamic graphs in the real world involve a huge amount of data,
which makes recomputing the solution after every update infeasible. Due to this large
size of data, it also becomes impractical for solving such problems on a single sequential
machine because of both memory and computation costs involved. Thus, it becomes more
significant to explore these dynamic graph problems on a computation model that effi-
ciently handles large storage and computations involved. Several such models considered
include parallel model, semi-streaming model and distributed model as follows.

1.2.1 Parallel Model

Parallel model of computation explores the use of multiple processors to work together in
parallel in solving the given problem often using a shared memory. The popular shared
memory model [FW78] assumes a global shared memory accessed by multiple processors,
which are parallel random access machines (PRAM), i.e., are allowed to access the shared
memory in parallel and perform integer operations in constant time. Based on criteria for
simultaneous read/write access by multiple processors on the same memory cell, this model
is classified in three types. Exclusive Read Exclusive Write (EREW) model restricts any
two processors to simultaneously read or write the same memory cell. Concurrent Read
Exclusive Write (CREW) model relaxes this restriction for reading, allowing any number
of processors to simultaneously read the same memory cell. Concurrent Read Concurrent
Write (CRCW) model further relaxes this restriction to writing as well.

In the past three decades a lot of work has been done to address dynamic graph prob-
lems in parallel environment. Several significant graph problems are studied in parallel
dynamic setting including k-Connectivity [PR86, FL96, LS95, LBS01], connected compo-
nents [PR86, FL96], shortest paths [LMS96] and graph partitioning [OR97]. However, the
most extensively studied problem in this model is minimum spanning trees (MST).

Pawagi and Ramakrishnan [PR86] presented the first parallel dynamic algorithms
for maintaining MST under vertex insertion or edge insertion/deletion in O(log n) time
per update using n2 processors on a CREW PRAM. This improved over recomputation
from scratch after an update using the best static algorithm requiring O(log2 n) time.
Tsin [Tsi88] extended it to handle vertex deletions using similar bounds. Later, Varman
and Doshi [VD86] improved the total work done per update for maintaining MST under
vertex insertions, reducing the processors required to n. This was further improved to
n/ log n processors by Jung and Melhorn [JM88] but for a more relaxed CRCW PRAM
model. Further, Pawagi and Kaser [PK93] improved the bounds for edge update and dele-
tion of a vertex of degree d, to O(log n) and O(log n+log2 d) update time respectively using
O(n2/ log n) processors on a CREW PRAM. The vertex deletion bound was improved for
high degree vertices by Shen and Laing [SL93], requiring O(log n · log d) update time using
O(n2/ log n log d) processors. Similarly, the edge update bound was improved for sparse
graphs by Johnson and Metexas [JM96] requiring O(log n) update time using O(m/ log n)
processors on a stricter EREW model. Ferragina and Luccio [FL96] improved the work
efficiency of the algorithm at the cost of higher update time of O(log3/2 n log log m

n ) using
O(n log m

n / log log m
n ) processors. Das and Ferragina[DF99] further improved it by pre-

senting two algorithms requiring O(log n) update time using O(m2/3/ log n) processors,
and O(log n log m

n ) update time using O(n2/3/ log n) processors. Finally, it was improved

to O(log n) update time using O(n2/3 log m
n / log n) processors by Ferragina [Fer95].
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Maintaining MST have also been studied under batch updates. Pawagi [Paw89] first
studied the problem for a batch of k vertex insertions, requiring O(log n log k) update
time using O(nk) processors on a CREW PRAM. Pawagi and Kaser [PK93] improved
the work efficiency of the problem allowing both k vertex insertion or k edge insertions
(or weight decrease) in O(log n · log k) update time using O(nk/ log n log k) processors on
a CREW PRAM. They also showed k edge cost increase/deletion in O(log n + log2 d)
update time using O(n2/ log n) processors CREW. The k vertex insertion result was also
proved for the stricter EREW PRAM model by Johnson and Metexas [JM96]. Shen and
Laing [SL93] improved the number of processors required for k edge insertions and deletions

in O(log n log k) update time to O(n(1 + k
logn log k )) and O( n2

logn log k ) respectively. Finally,
Ferragina and Luccio [FL96] presented two algorithm for batch edge insertions and dele-

tions requiring O(log
3
2 n) update time using O(n log m

n ) processors, and O(log
3
2 n log m

n )
update time using O(min{bn,m}) processors respectively on a CREW PRAM.

1.2.2 Semi-Streaming Model

Streaming model [AMS99, FKSV03, GKS01] is a popular model for computation on large
data sets. In this model the input data is accessed as a stream, typically in a single pass
over the input, allowing very small storage space (poly log in input size). For most graph
problems such limited space was found to be impractical which led to proposal of relaxed
streaming models as the semi-streaming model [Mut05, FKM+05], allowing Õ(n) space.

Dynamic graph updates in the semi-streaming model have been studied using three
popular models: insert-only model, insert-delete model and sliding window model. In the
insert-only model, we have a stream of edges that are inserted in the graph. This is similar
to the static semi-streaming model, where all the edges of the graph are accessed in the
form of an input stream using a single pass. The insert-delete model [AGM12a] considers
a stream of edges that are either inserted or deleted from the graph. In the sliding window
model [CMS13] we have a stream of edges, where only the recent k edges are considered.
Ideally, the aim is to develop single pass algorithms but several results even consider
constant or O(log n) number of passes. Refer to [McG14, McG17] for surveys.

The study of dynamic streams in the insert-delete model was initiated by Ahn et
al. [AGM12a]. They used graph sketches to develop efficient algorithms for testing graph
connectivity, k connectivity, bipartiteness, finding minimum spanning trees and cut sparsi-
fiers. The result was later extended to report a witness for k edge connectivity [AGM12b]
and approximately testing k vertex connectivity [GMT15] using Õ(nk) space. The cut
sparsifier by Ahn et al. [AGM12a] required O(log n) passes, which was later improved to
a single pass [AGM12b, GKP12]. Spectral sparsifiers were first studied in this model by
Ahn et al. [AGM13] requiring super-linear space. This was later improved to linear space
requiring two passes by Kapralov and Woodruff [KW14], and finally to a single pass by
Kapralov et al. [KLM+17]. Approximate maximum matching is known to be computable
using Θ̃(n2/α3) space [AKLY16, CCE+16], where α is the approximation factor. This
reduces to Õ(n2/α4) if only the size of matching is reported [AKL17]. Further, for report-
ing the maximum matching of size k the required space is Θ̃(k2) [BS15, CCE+16]. Other
significant problems considered in this model include finding densest subgraphs [BHNT15,
MTVV15, ELS15, EHW16] and counting triangles [MVV16, BC17a, KP17]. Additionally,
there have also been some progress in proving lower bounds for problems in the dynamic
semi-streaming models [SW15, AKLY15, Kon15].
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1.2.3 Distributed Model

Distributed model for computation is widely studied as it closely simulates the real world
networks. Popular models of distributed computation for solving graph problems include
CONGEST and LOCAL models [Pel00]. In both these models, computing nodes having
local storage are available at each vertex of the graph, where the edges of the graph
represent the communication channels between the nodes. The communication between
two nodes takes place by passing messages in synchronous/asynchronous rounds. In the
CONGEST model, the size of a message is typically bounded by O(log n) bits (or O(1)
words). A relaxed variant of this model is CONGEST (B) which relaxes the message
size to O(B) words. In the LOCAL model the size of a message is typically unbounded,
however the local storage space at each node is limited to O(log n) size.

Dynamic graphs in the distributed model (also called dynamic networks) have been
studied since late 70s (see [ACK08] for a brief survey). Most of the earlier works focussed
on efficiently performing a reset of the earlier computation to recompute the solution from
scratch [AAG87, AS88, Gaf87, SG89]. In a seminal work, Awerbuch et al. [ACK08] demon-
strated the maintenance of a spanning tree using amortized O(n) messages improving from
O(m) messages required for recomputation from scratch. Some of the most studied prob-
lems in this model includes the maintenance of all pair shortest paths (APSP), breadth
first search (BFS) trees and minimum spanning trees (MST).

Ramrao and Venkatesan [RV92] presented a fully dynamic and an incremental algo-
rithm for maintaining APSP requiring O(n3) messages and O(n2) messages respectively
per update, using O(n) space. For incremental all pairs shortest paths, Italiano [Ita91]
improved the number of messages to O(n log nw), where w is the maximum weight of
an edge. The problem is also studied [CSFN03, CDSF10] in terms of output sensitivity
(number of vertex pairs whose shortest paths are updated), to yield faster results if output
sensitivity is o(n2).

BFS trees can be maintained in the incremental and decremental setting by extending
the classical result of Even and Shiloach [ES81], requiring O(nD) total update time, where
D is the diameter of the graph. Henzinger et al. [HKN13] improved the result for dense
graph at the expense of approximating distances by (1 + ε) factor, requiring total update
time of O(n1/3(Dq/ε)2/3) and O(n1/5(Dq)4/5/ε) respectively for insertion and deletion of
q edges/vertices. Ghaffari and Parter [GP16] presented the first algorithm to compute
fault tolerant BFS structure, using O(D log n) rounds.

Distributed construction of fault tolerant MST structures was first studied by Flocchini
et al. [FEP+12], who presented a structure resilient to an edge/vertex failure which can
be constructed in O(n) rounds using O(n2) messages. Other results study fast retrieval of
MST [DLPP13] and reporting a spanning tree having minimum diameter [GSW11], after
an edge failure. Recently, Ghaffari and Parter [GP16] improved the construction time of
fault tolerant BFS tree to O(D + n

√
n) rounds. Further, King et al. [KKT15] recently

improved the worst case message complexity of rebuilding the MST after an edge insertion
or deletion to O(n) and Õ(n) respectively.

Other significant problems studied in this setting include colouring [LEK08], maximal
independent sets [CHHK16], spanners [Elk07, BKS12], biconnected components [SG98,
PPC02] and 3 edge connectivity [Jen97].
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1.3 Experimental Analysis

For various graph algorithms [Mey01, ALM96, BMST06], the average-case time com-
plexity (average performance on random graphs) has been proven to be much less than
their worst case complexity. A classical example is the algorithm by Micali and Vazi-
rani [MV80] for maximum matching. Its average case complexity has been proved to be
only O(m log n) [Mot94, BMST06], despite having a worst case complexity of O(m

√
n).

An equally important aspect is the empirical performance of an algorithm on real world
graphs. After all, the ideal goal is to design an algorithm having a theoretical guarantee
of efficiency in the worst case as well as superior performance on real graphs. Often such
an experimental analysis also leads to the design of simpler algorithms that are extremely
efficient in real world applications. The algorithm by Micali and Vazirani [MV80] has
also been empirically analysed [MR91, Cro91, KP98, HS17] resulting in several important
heuristics to improve its performance on various types of graphs. Thus, such an analysis
bridges the gap between theory and practice. The experimental analysis of different algo-
rithms for several dynamic graph problems has been performed as follows (also see [Zar00]
for an exhaustive survey).

Dynamic connectivity algorithms were first evaluated by Alberts et al. [ACI97a], who
studied the performance of sparsification [EGIN97] based algorithms and the random-
ized algorithm by Henzinger and King[HK99]. This study was extended by Fatourou et
al. [FSZZ99] who additionally evaluated another randomized algorithm by Nikoletseas et
al. [NRSY95]. Later, Iyer et al. [IKRT01] investigated these algorithms with the deter-
ministic algorithm by Holm et al. [HdLT01].

The problem of maintaining dynamic minimum spanning trees was first investigated
by Amato et al. [ACI97b], wherein they compared the effect of sparsification [EGIN97]
on the data structure by Frederickson [Fre85] along with other algorithms. Later, Ribeiro
and Toso [RT07] studied the problem under changing edge weights comparing various
approaches based on dynamic trees. Finally, Cattaneo et al. [CFPI10] compared these
algorithms with the algorithm by Holm et al. [HdLT01] with some simple algorithms
which performed well in practice.

Dynamic transitive closure was first investigated by Abdeddaim [Abd00] which stud-
ied various partially dynamic (incremental) algorithms. Later, Frigioni et al. [FMNZ01]
additionally evaluated several fully dynamic algorithms including that of Henzinger and
King [HK95] and Italiano [Ita86]. Finally, Krommidas and Zaroliagis [KZ08] extended
the study by additionally evaluating several other algorithms [DI05, Kin99, KT01, Rod08,
RZ08, RZ16].

Perhaps the most exhaustively evaluated dynamic graph problem is the maintenance
of shortest paths. Frigioni et al. [FINP98] investigated the significance of the dynamic
algorithms over static algorithms in practice for single source shortest paths with non-
negative edge weights. Later, Demetrescu et al. [DFMN00] generalized this study to allow
arbitrary edge weights. Further, Buriol et al. [BRT08] investigated the impact of heap
reduction on such algorithms. Additionally, a few studies have also evaluated the problem
under batch updates [BW09, DDF+15], only updating edge weights [DW07, SS07] and
maintaining all pair shortest paths [DFIT06, DI06b].

Other dynamic problems of practical significance which have been evaluated exper-
imentally include dominators [Sre95, PGT11, GILS12], topological sorting [PK06] and
dynamic maximum flows [KT07, KT08, GHK+15], etc.
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1.4 Depth First Search

Depth First Search (DFS) is a well known graph traversal technique. This technique has
been reported to be introduced by Charles Pierre Trémaux, a 19th-century French math-
ematician who used it for solving mazes. However, it was Tarjan, who in his seminal
work [Tar72], demonstrated the power of DFS traversal for solving various fundamental
graph problems, namely, topological sorting, connected components, biconnected compo-
nents and strongly-connected components. Since then, DFS traversal is one of the most
widely used graph traversal techniques having played the central role in the design of
efficient algorithms for many other graph problems including bipartite matching [HK73],
dominators in directed graph [Tar74], planarity testing [HT74], edge and vertex connec-
tivity [ET75] etc. Interestingly, the role of DFS traversal is not confined to merely the
design of efficient algorithms. For example, consider the classical result of Erdős and Rényi
[ER60] for the phase transition phenomena in random graphs. There exist many proofs of
this result which are intricate and based on highly sophisticated probability tools. How-
ever, recently, Krivelevich and Sudakov [KS13] designed a truly simple, short, and elegant
proof for this result based on the insights from a DFS traversal in a graph.

Let G = (V,E) be an undirected connected graph having n vertices and m edges.
The DFS traversal of G produces a rooted spanning tree (or forest), called DFS tree (or
forest), in O(m+n) time. For any ordered rooted spanning tree, the non-tree edges of the
graph can be classified into four categories as follows. An edge directed from a vertex to
its ancestor in the tree is called a back edge. Similarly, an edge directed from a vertex to
its descendant in the tree is called a forward edge . Further, an edge directed from right
to left in the tree is called a cross edge. The remaining edges directed from left to right
in the tree are called anti-cross edges . A necessary and sufficient condition for such a
tree to be a DFS tree is the absence of anti-cross edges. In case of undirected graphs, this
condition reduces to the absence of all cross edges. Thus, many DFS trees are possible
for any given graph from a given root r. However, if the traversal is performed strictly
according to the order of edges in the adjacency lists of the graph, the resulting DFS tree
will be unique. Ordered DFS tree problem is to compute the order in which the vertices
are visited by this unique DFS traversal.

In spite of the simplicity of a DFS tree, designing any efficient parallel or dynamic
algorithm for a DFS tree has turned out to be quite challenging. [Rei85, Rei87] was
the first to address the complexity of the DFS problem in a dynamic environment. He
showed [Rei85] that the ordered DFS tree problem is a P -Complete problem. Reif [Rei87]
and later Miltersen et al. [MSVT94] proved that P -Completeness of a problem also implies
hardness of the problem in the dynamic setting. The work of Miltersen et al. [MSVT94]
shows that if the ordered DFS tree is updateable in O(poly log n) time, then the solution of
every problem in class P is updateable in O(poly log n) time. In other words, maintaining
the ordered DFS tree is indeed the hardest among all the problems in class P . In our view,
this hardness result, which is actually for only the ordered DFS tree problem, has proved
to be quite discouraging for the researchers working in the area of dynamic algorithms.
This is evident from the fact that for all the static graph problems that were solved using
DFS traversal in the 1970’s, none of their dynamic counterparts used a dynamic DFS tree
[HK99, HdLT01, KKM13, RZ08, Cha06, CPR08, Dua10].
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1.4.1 Dynamic algorithms for DFS

Apart from showing the hardness of the ordered DFS tree problem, very little work has
been done on the design of any non-trivial algorithm for the problem of maintaining any
DFS tree in a dynamic environment. For the case of a directed acyclic graph (DAG),
Franciosa et al. [FGN97] presented an incremental algorithm for maintaining a DFS tree
in O(mn) total time. Recently, again only for a DAG, Baswana and Choudhary [BC15]
presented a decremental algorithm for maintaining a DFS tree in expected O(mn log n)
total time. These are the only non-trivial results available for the dynamic DFS tree
problem.

Maintaining a DFS tree incrementally for an undirected graph (or general directed
graph) was stated as an open problem by Franciosa et al. [FGN97]. These algorithms
are the only results known for the dynamic DFS tree problem. Moreover, none of these
existing algorithms, though designed for only a partially dynamic environment, achieves a
worst case bound of o(m) on the update time. Furthermore, none of these results proves
that general DFS is not as hard as ordered DFS in the dynamic environment. This is
because the speculations of having to incur a complete recomputation in the worst case
after an update is not disproved by amortized bounds resulting in the perceived O(m)
barrier for general DFS as well.

1.4.2 DFS in other models of computation

In spite of the simplicity of a DFS tree, designing efficient parallel, distributed or streaming
algorithms for a DFS tree has turned out to be quite challenging. Moreover, in each of these
models DFS have only been addressed in the static setting (except a minor result [Cha90]
for parallel), which can be described as follows.

Parallel Algorithms

As described earlier, Reif [Rei85] showed the hardness of the ordered DFS tree problem in
the parallel setting by proving that it is a P -Complete problem. For many years, this result
seemed to imply that the general DFS tree problem, that is, the computation of any DFS
tree of the graph is also inherently sequential. However, Aggarwal et al. [AA88, AAK90]
proved that the general DFS tree problem is in RNC 10 by designing a randomized EREW
PRAM algorithm that takes Õ(1) expected time. But the fastest deterministic algorithm
for computing general DFS tree in parallel still takes Õ(

√
n) time [AAK90, GPV93] in

CRCW PRAM 11 , even for undirected graphs. Moreover, the general DFS tree problem
has been shown to be in NC for some special graphs including DAGs [GB84, Zha86,
KC86] and planar graphs [Hag90, Kao88, Smi86] (see [Fre91] for a survey). For DAGs,
Chaudhuri [Cha90] presented the only parallel dynamic algorithm for maintaining a DFS
tree, requiring slightly better update time (by O(log d) factor) than recomputing using a
parallel static algorithm [KC86] after an edge/vertex insertion, where d is the diameter of

10NC is the class of problems solvable using O(nc1) processors in parallel in O(logc2 n) time, for any
constants c1 and c2. The class RNC extends NC to allow access to randomness.

11 It essentially shows DFS to be NC equivalent of minimum-weight perfect matching, which is in RNC
whereas its best deterministic algorithm requires Õ(

√
n) time.
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the DAG. In fact for random graphs in G(n, p) model 12 [ER59], Dyer and Frieze [DF91]
proved that even ordered DFS tree problem is in RNC. Whether general DFS tree problem
is in NC is still a long standing open problem.

Streaming Algorithms

In the semi-streaming environment, the input graph is accessed in form of a stream of graph
edges, where an algorithm can perform multiple passes on this stream but is allowed to
use only O(n) local space. The DFS tree can be trivially computed using O(n) passes
over the input graph stream, where each pass adds one vertex to the DFS tree. However,
computing the DFS tree in Õ(1) passes is considered hard [FHLT15]. To the best of our
knowledge, it remains an open problem to compute a DFS tree using even o(n) passes in
any relaxed streaming environment [O’C09, Ruh03].

Distributed Algorithms

Computing a DFS tree in a distributed setting was widely studied in 1980’s and 1990’s.
A DFS tree of the given graph can be computed in O(n) rounds, with different trade offs
between number of messages passed, and size of each message. If the size of a message is
allowed to be O(n), the DFS tree can be built using O(n) messages [KIS90, MH96, SI89].
However, if the size of a message is limited to Õ(1), the number of messages required is
O(m) [Cid88, LMT87, Tsi02]. Note that some of these algorithms also works on stricter
models for distributed computation. The details on these results can be found in [Tsi02].

Thus, to maintain a DFS tree in dynamic setting, each update requires Õ(
√
n) time

on a CRCW PRAM in deterministic parallel setting, O(n) passes in the semi-streaming
setting and O(n) rounds in the distributed setting, which is very inefficient. Hence, explor-
ing the dynamic maintenance of a DFS tree in parallel, semi-streaming and distributed
environments seems to be a long neglected problem of practical significance.

1.4.3 Empirical analysis of DFS

Most dynamic graphs in real world are dominated by insertion updates [Kun16, LK14,
DH14]. Despite its significance, no empirical study have been performed for maintaining a
DFS tree even incrementally. For the sake of empirical analysis, we can also consider the
static algorithms to be used as incremental algorithms. A short summary of the current-
state-of-the-art of incremental algorithms for DFS tree is as follows. An obvious incre-
mental algorithm is to recompute the whole DFS tree in O(m+n) time from scratch after
every edge insertion. Let us call it SDFS henceforth. It was shown by Kapidakis [Kap90]
that a DFS tree can be computed in O(n log n) time for a random graph [ER60, Bol84]
if we terminate the traversal as soon as all vertices are visited. Let us call this variant
as SDFS-Int. Notice that both these algorithms recompute the DFS tree from scratch
after every edge insertion. Moving to the algorithms that avoid this recomputation from
scratch, we only have the incremental DFS algorithm for DAGs, say FDFS, by Franciosa
et al. [FGN97] as described above.

12G(n, p) denotes a random graph where every edge of the graph exists independently with probability
p.
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1.5 Our results

We successfully address the problem of dynamic DFS from several directions: ranging
from theoretical to experimental, sequential to parallel/distributed/semi-streaming, and
near optimal amortized to significant worst case guarantees. Our results can be described
as follows.

1.5.1 Incremental DFS for undirected graph

Maintaining a DFS tree incrementally for an undirected graph (or general directed graph)
was stated as an open problem by Franciosa et al. [FGN97]. We present the first incre-
mental algorithm for maintaining a DFS tree (or DFS forest if the graph is not connected)
in an undirected graph.

In order to handle insertion of cross edges efficiently, we use two principles. The first
principle, called monotonic fall, ensures that the depth of each vertex never decreases
during the algorithm. The second principle, minimal restructuring, ensures that upon
insertion of a cross edge, we perform minimal changes to current DFS tree to build the
DFS tree of the updated graph. While none of these two principles in isolation is effective,
it is their novel combination that leads to an efficient incremental algorithm for a DFS
tree. Using these principles, we first present a simple algorithm that achieves total update
time of O(n3/2

√
m). We then show how a simple yet significant change to the above

algorithm gives a an algorithm which takes a total of O(n2) time to process any arbitrary
online sequence of edges. Observe that the amortized update time per edge insertion for
or second algorithm is Ω(n2/m), which is O(1) for dense graphs, i.e., m = Θ(n2).

A standard way of storing any rooted tree is by keeping a parent pointer for each
vertex in the tree. We call this representation an explicit representation of a tree. Our
algorithm maintains a DFS tree explicitly at each stage. Baswana and Choudhary [BC15]
recently established a worst case lower bound of Ω(mn) for maintaining the ordered DFS
tree explicitly under insertion (or deletion) of edges. In the light of this lower bound, our
algorithm implies that maintaining a DFS tree explicitly in the incremental environment
is provably faster than maintaining an ordered DFS tree for dense graphs.

We also show the existence of a sequence of Θ(n) edge insertions such that any incre-
mental algorithm that obeys the principle of monotonic fall must require Ω(n2) time for
maintaining a DFS tree explicitly. Therefore, the O(n2) time complexity of our algorithm
is indeed tight even for sparse graphs.

Furthermore, our algorithm uses only O(m+ n) extra space. Excluding the standard
data structures for maintaining ancestors in a rooted tree [AH00, CH05], our algorithm
employs very simple data structures. These salient features make our algorithm an ideal
candidate for practical applications as well.

1.5.2 Dynamic DFS with worst case bounds

The existing algorithms described in Section 1.4.1 and our algorithms described above
are only designed for partially dynamic environment. Moreover, none of these algorithms
achieve a worst case bound of o(m) on the update time. Furthermore, none of these results
proves that general DFS is not as hard as ordered DFS in the dynamic environment. This
is because the speculations of having to incur a complete recomputation in the worst
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case after an update is not disproved by amortized bounds resulting in the perceived
O(m) barrier for general DFS as well. So the following intriguing questions remained
unanswered till date:

• Does there exist any fully dynamic algorithm for maintaining a DFS tree?

• Is it possible to achieve worst case o(m) update time for maintaining a DFS tree in
a dynamic environment?

Not only do we answer these open questions affirmatively for undirected graphs, we
also use our dynamic algorithm for maintaining a DFS tree to provide efficient solutions
for a couple of well studied dynamic graph problems. Moreover, our results also handle
vertex updates which are generally considered harder than edge updates. Furthermore,
our results finally prove that general DFS is indeed not as hard as ordered DFS in the
dynamic setting as was the case in parallel setting. Our results can be described as follows.

We consider a generalized notion of updates wherein an update could be either inser-
tion/deletion of a vertex or insertion/deletion of an edge. For any set U of such updates,
let G+U denote the graph obtained after performing the updates U on the graph G. Our
main result can be succinctly described in the following theorem.

Theorem 1.1. An undirected graph can be preprocessed to build a data structure of
O(m log n) size such that for any set U of k ≤ n updates, a DFS tree of G + U can
be reported in O(nk log4 n) time.

With this result at the core, we easily obtain the following results for dynamic DFS
tree in an undirected graph.

1. Fault Tolerant DFS tree:

Given any set of k failed vertices or edges, we can report a DFS tree for the resulting
graph in O(nk log4 n) time.

2. Fully Dynamic DFS tree:

Given any arbitrary online sequence of vertex or edge updates, we can maintain a
DFS tree in O(

√
mn log2.5 n) worst case time per update.

3. Incremental DFS tree:

Given any arbitrary online sequence of edge insertions, we can maintain a DFS tree
in O(n log3 n) worst case time per edge insertion.

These are the first o(m) worst case update time algorithms (for sufficiently dense
graphs, i.e., m > n log5 n) to maintain a DFS tree in a dynamic environment. Table 1.1
presents a comparison of our results with the existing results for maintaining a DFS tree
in the dynamic setting. Recently, there has been significant work [AW14, HKNS15] on
establishing conditional lower bounds on the time complexity of various dynamic graph
problems. A simple reduction from [1], based on the Strong Exponential Time Hypothesis
(SETH), implies a conditional lower bound of Ω(n) on the update time of any fully dynamic
algorithm for a DFS tree under vertex updates. We also present an unconditional lower
bound of Ω(n) for maintaining a fully dynamic DFS tree explicitly under edge updates.
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Graph Type Update Reference

DAG Incremental
O(n)

amortized
Franciosa et al. [FGN97]

DAG Decremental
Õ(n) expected

amortized
Baswana and Choudhary [BC15]

Undirected Incremental
O(n2/m)
amortized

Our Result (Ch. 2)

Undirected Incremental Õ(n) Our Result (Ch. 3)

Undirected Fault Tolerant * Õ(nk) Our Result (Ch. 3)

Undirected Fully Dynamic * Õ(
√
mn) Our Result (Ch. 3)

Table 1.1: Comparison of different algorithms for maintaining dynamic DFS of a graph. (*) denotes
the algorithm also handles vertex updates.

Applications of Fully Dynamic DFS

In the static setting, a DFS tree can be easily used to answer connectivity, 2-edge con-
nectivity and biconnectivity queries. Our fully dynamic DFS algorithm thus seamlessly
solves these problems for both vertex and edge updates. Further, our result gives the first
deterministic algorithm with O(1) query time and o(m) worst case update time for several
well studied variants of these problems in the dynamic setting. These problems include
dynamic subgraph connectivity [CPR08, Dua10, EGIN97, Fre85, HdLT01, KKM13] and
vertex update versions of dynamic biconnectivity [Hen00, Hen95, HdLT01] and dynamic
2-edge connectivity [HdLT01, EGIN97, Fre85]. The existing results offer different trade-
offs between the update time and the query time, and differ on the types (amortized or
worst case) of update time and the types (deterministic or randomized) of query time. Our
algorithm, in particular, improves the deterministic worst case bounds for these problems,
thus demonstrating the relevance of DFS trees in solving dynamic graph problems.

1.5.3 Other Models of Computation

As described earlier in Section 1.4.2, in order to maintain a DFS tree in dynamic setting,
each update requires Õ(

√
n) time on a CRCW PRAM in deterministic parallel setting,

O(n) passes in the semi-streaming setting and O(n) rounds in the distributed setting,
which is very inefficient. Hence, exploring the dynamic maintenance of a DFS tree in par-
allel, semi-streaming and distributed environments seems to be a long neglected problem
of practical significance.

Again, we consider an extended notion of updates wherein an update could be either
insertion/deletion of a vertex or insertion/deletion of an edge. Furthermore, an inserted
vertex can be added with any set of incident edges to the graph. We presented the first
parallel, semi-streaming and distributed algorithms for maintaining a DFS tree in the
dynamic setting. Each of these algorithms are nearly optimal (up to poly log n factors) as
described below.
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Parallel Algorithms

In the parallel setting, our main result can be succinctly described as follows.

Theorem 1.2. Given an undirected graph and its DFS tree, it can be preprocessed to build
a data structure of size O(m) in O(log n) time using m processors on an EREW PRAM
such that for any update in the graph, a DFS tree of the updated graph can be computed
in O(log3 n) time using n processors on an EREW PRAM.

With this result at the core, we easily obtain the following results.

1. Parallel Fully Dynamic DFS:
Given any arbitrary online sequence of vertex or edge updates, we can maintain a
DFS tree of an undirected graph in O(log3 n) time per update using m processors
on an EREW PRAM.

2. Parallel Fault tolerant DFS:
An undirected graph can be preprocessed to build a data structure of size O(m) such
that for any set of k(≤ log n) updates in the graph, a DFS tree of the updated graph
can be computed in O(k log2k+1 n) time using n processors on an EREW PRAM.

Table 1.2 illustrates our results with respect to the existing result in the right perspec-
tive. Our fully dynamic algorithm and fault tolerant algorithm (for constant k), clearly
take optimal time (up to poly log n factors) for maintaining a DFS tree. Our fault tolerant
algorithm (for constant k) is also work optimal (up to poly log n factors) since a single
update can lead to Θ(n) changes in the DFS tree. Moreover, our result also establishes
that maintaining a fully dynamic DFS tree for an undirected graph is in NC (which is still
an open problem for DFS tree in the static setting).

Type Update Processors Reference

Fully Dynamic Õ(
√
n) n3 Goldberg et al. [GPV93]

Fully Dynamic Õ(1) m Our Result (Ch. 4)

Fault Tolerant Õ(k log2k n) n Our Result (Ch. 4)

Table 1.2: Deterministic Parallel Algorithms for Dynamic DFS

Semi-streaming algorithm

Our parallel fully dynamic DFS algorithm can be seamlessly adapted to the semi-streaming
environment as follows.

Theorem 1.3. Given any arbitrary online sequence of vertex or edge updates, we can
maintain a DFS tree of an undirected graph using O(log2 n) passes over the input graph
per update by a semi-streaming algorithm using O(n) space.

Table 1.3 illustrates our result with respect to the existing result in the right per-
spective. Our semi-streaming algorithm clearly takes optimal number of passes (up to
poly log n factors) for maintaining a DFS tree.



18

Type Passes Space Reference

Fully Dynamic n O(n) Trivial

Fully Dynamic Õ(1) O(n) Our Result (Ch. 4)

Table 1.3: Semi-streaming Algorithms for Dynamic DFS

Distributed algorithm

Our parallel fully dynamic DFS algorithm can also be adapted to the distributed environ-
ment as follows.

Theorem 1.4. Given any arbitrary online sequence of vertex or edge updates, we can
maintain a DFS tree of an undirected graph in O(D log2 n) rounds per update in the syn-
chronous CONGEST (n/D) model using O(nD log2 n + m) messages of size O(n/D) re-
quiring O(n) space on each processor, where D is diameter of the graph.

Table 1.4 illustrates our result with respect to the existing results in the right per-
spective. Our distributed algorithm that works in a restricted CONGEST (B) model, also
arguably requires optimal rounds (up to poly log n factors) because it requires Ω(D) rounds
to propagate the information of the update throughout the graph. Since almost the whole
DFS tree may need to be updated due to a single update in the graph, every algorithm
for maintaining a DFS tree in the distributed setting will require Ω(D) rounds 13. This
essentially improves the state of the art for the classes of graphs with o(n) diameter.

Type Rounds Msg. Size Messages Reference

Fully Dynamic O(n) 1 O(m) [Cid88, LMT87, Tsi02]

Fully Dynamic O(n) n O(n) [KIS90, MH96, SI89]

Fully Dynamic Õ(D) n/D Õ(m+ nD) Our Result (Ch. 4)

Table 1.4: Distributed Algorithms for Dynamic DFS

1.5.4 Empirical analysis of Incremental DFS

We focus on only incremental DFS algorithms as most dynamic graphs in the real world
are dominated by insertion updates [Kun16, LK14, DH14]. Moreover, in every other dy-
namic setting, only a single dynamic DFS algorithm is known making a comparative study
impractical. Despite having several algorithms for incremental DFS, not much is known
about their empirical performance. Our incremental algorithms having a total update time
of O(n3/2

√
m) and O(n2) will henceforth be referred as ADFS1 and ADFS2 respectively.

Whereas, our incremental algorithm with a worst case guarantee of O(n log3 n) per update
shall be referred as WDFS. Table 1.5 compares the existing algorithms (see Section 1.4.3)
and our proposed algorithms for maintaining DFS trees incrementally. However, till date
there is no non-trivial incremental DFS algorithm in general directed graphs.

13For an algorithm maintaining the whole DFS tree at each node, our message size is also optimal. This
is because an update of size O(n) (vertex insertion with arbitrary set of edges) will have to be propagated
throughout the network in the worst case. In O(D) rounds, it can only be propagated using messages of
size Ω(n/D). (see Section 4.10.2 for details).
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Graph Time per update Total time Reference

Any O(m) O(m2) SDFS [Tar72]

Random O(n log n) expected O(mn log n) expected SDFS-Int [Kap90]

DAG O(n) amortized O(mn) FDFS [FGN97]

Undirected O(n3/2/
√
m) amortized O(n3/2

√
m) ADFS1 (Ch. 2)

Undirected O(n2/m) amortized O(n2) ADFS2 (Ch. 2)

Undirected O(n log3 n) O(mn log3 n) WDFS (Ch. 3)

Table 1.5: Comparison of different algorithms for maintaining incremental DFS of a graph.

We contribute to both experimental analysis and average-case analysis of the algo-
rithms for incremental DFS. Our analysis reveals the following interesting results.

Experimental performance of the existing algorithms

We first evaluated the performance of the existing algorithms on the insertion of a uni-
formly random sequence of

(
n
2

)
edges. The most surprising revelation of this evaluation

was the similar performance of ADFS1 and ADFS2, despite the difference in their worst
case bounds (see Table 1.5). Further, even FDFS performed better on random graphs
taking just Θ(n2) time. This is quite surprising because the worst case bounds of ADFS1
and FDFS are greater than Θ(n2) by a factor of

√
m/n and m/n respectively. We then

show the tightness of their analysis of ADFS1 and FDFS by constructing worst case ex-
amples for these algorithms. Their superior performance on random graphs motivated us
to explore the structure of a DFS tree in a random graph.

Structure of DFS tree in random graphs

A DFS tree of a random graph can be seen as a broomstick: a possibly long path without
any branching (stick) followed by a bushy structure (bristles). As the graph becomes
denser, we show that the length of the stick would increase significantly and establish the
following result.

Theorem 1.5. For a random graph G(n,m) with m = 2in log n, its DFS tree will have a
stick of length at least n− n/2i with probability 1−O(1/n).

The length of stick evaluated from our experiments matches perfectly with the value
given by Theorem 1.5. It follows from the broomstick structure that the insertion of only
the edges with both endpoints in the bristles can change the DFS tree. As follows from
Theorem 1.5, the size of bristles decreases as the graph becomes denser. With this insight
at the core, we are able to establish Õ(n2) bound on ADFS1 and FDFS for a uniformly
random sequence of

(
n
2

)
edge insertions.

Remark: It was Sibeyn [Sib01] who first suggested viewing a DFS tree as a broomstick
while studying the height of a DFS tree in random graph. However, his definition of stick
allowed a few branches on the stick as well. Note that our added restriction (absence of
branches on the stick) is crucial in deriving our results as is evident from the discussion
above.
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New algorithms for random and real world graphs

We use the insight about the broomstick structure and Theorem 1.5 to design a much
simpler incremental DFS algorithm (referred as SDFS2) that works for both undirected
graphs and directed graphs. Despite being very simple, it is shown to theoretically match
(up to Õ(1) factors) and experimentally outperform ADFS and FDFS for dense random
graphs.

For real graphs both ADFS and FDFS were found to perform much better than other
algorithms including SDFS2. With the insights from ADFS/FDFS, we design two simple
algorithms for undirected and directed graphs respectively (both referred as SDFS3), which
perform much better than SDFS2. In fact, for directed graphs SDFS3 almost matches the
performance of FDFS for most real graphs considered, despite being much simpler to
implement as compared to FDFS.

Semi-Streaming Algorithms

Interestingly, both SDFS2 and SDFS3 can also be used as single-pass semi-streaming
algorithms for computing a DFS tree of a random graph using O(n log n) space. This im-
mediately also gives a single-pass semi-streaming algorithm using the same bounds for an-
swering strong connectivity queries incrementally. Strong connectivity is shown [BMM14,
Jan14] to require a working memory of Ω(εm) to answer these queries with probability
greater than (1 + ε)/2 in general graphs, for any ε > 0. Hence, our algorithms not only
give a solution for the problem in semi-streaming setting but also establish the difference
in the hardness of the problem in semi-streaming model for general and random graphs.

1.6 Organization of the thesis

We now present a brief outline of our thesis report. Our incremental algorithms for
maintaining a DFS tree for undirected graphs with amortized guarantees is presented in
Chapter 2. Chapter 3 describes our algorithms maintaining a DFS tree for undirected
graphs with worst case guarantees in the fault tolerant, incremental and fully dynamic
settings. The extension of these ideas to other models of computation giving near optimal
parallel, semi-streaming and distributed algorithms is presented in Chapter 4. Finally,
in Chapter 5 the empirical analysis of the incremental DFS algorithms is presented. We
conclude the thesis report with concluding remarks and possible directions for future
research in Chapter 6.



Chapter 2

Incremental DFS in Undirected
Graphs

2.1 Introduction

Prior to our work, the only known algorithm for maintaining a DFS tree in a dynamic
setting was a 20 year old result by Franciosa et al. [FGN97]. They presented an algorithm
to maintain incremental DFS for a directed acyclic graph, and also mentioned maintaining
incremental DFS for undirected graphs as an open problem. We present the first incre-
mental algorithm for maintaining a DFS tree (or DFS forest if the graph is not connected)
of an undirected graph. Our algorithm takes a total of O(n2) time to process any arbitrary
online sequence of edges. Observe that the amortized update time per edge insertion is
Ω(n2/m), which is O(1) for dense graph (i.e., m = Θ(n2)). The following short discussion
may help one realize the non-triviality of maintaining such a DFS tree incrementally.

w

u v

x

y

T (u) T (v)

Figure 2.1: Insertion of a cross edge (x, y).

Consider the insertion of an edge (x, y). If (x, y) is a back edge, then no change is
required in the DFS tree. Otherwise, consider the insertion of a cross edge (x, y). See
Figure 2.1 for a better visual description. Let w be the lowest common ancestor of x and y
in T . Let u and v be its children such that x ∈ T (u) and y ∈ T (v). The insertion of (x, y)
violates the property of a DFS tree as follows. Let S be the set of visited vertices when
the DFS traversal reaches w. Since T (u) and T (v) are two disjoint subtrees hanging from
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w, the vertices of T (u) and T (v) belong to disjoint connected components in the subgraph
induced by V \S. However, the insertion of edge (x, y) connects these components such
that the vertices of T (u) ∪ T (v) have to hang as a single subtree from w in the DFS tree.
This implies that T (u) will have to be rerooted at x and hung from y (or T (v) will have to
be rerooted at y and hung from x). This rerooting will force restructuring of T (u) because,
in order to keep it as a DFS subtree, we need to ensure that each non-tree edge in T (u)
is a back edge. It is not obvious how to perform this restructuring in an efficient manner.

In order to handle insertion of cross edges efficiently, we use two principles. The first
principle, called monotonic fall, ensures that the depth of each vertex never decreases
during the algorithm. The second principle, called minimal restructuring, ensures that
while rerooting a subtree upon insertion of a cross edge, we perform minimal changes in
the subtree in order to preserve the DFS property. While none of these two principles in
isolation is effective, it is their novel combination that leads to an efficient incremental
algorithm for maintaining a DFS tree.

A standard way of storing any rooted tree is by keeping a parent pointer for each vertex
in the tree. We call this representation an explicit representation of a tree. Our algorithm
maintains a DFS tree explicitly at each stage. Baswana and Choudhary [BC15] established
a worst case lower bound of Ω(mn) for maintaining the ordered DFS tree explicitly under
insertion (or deletion) of edges. In the light of this lower bound, our algorithm implies
that maintaining a DFS tree explicitly in the incremental environment is provably faster
than maintaining an ordered DFS tree for dense graphs.

We also show the existence of a sequence of Θ(n) edge insertions such that any incre-
mental algorithm that obeys the principle of monotonic fall must require Ω(n2) time for
maintaining a DFS tree explicitly. Therefore, the O(n2) time complexity of our algorithm
is indeed tight even for sparse graphs.

Furthermore, our algorithm uses only O(m+ n) extra space. Excluding the standard
data structures for maintaining ancestors in a rooted tree [AH00, CH05], our algorithm
employs very simple data structures. These salient features make our algorithm an ideal
candidate for practical applications as well.

2.2 Preliminaries

In this chapter we shall use the following notations in addition to the notations described
in Appendix A.

• r : Root of the tree T .

• level(v) : Level of a vertex v in T such that level(r) = 0, and
level(v) = level

(
par(v)

)
+ 1.

• level(e) : Level of an edge e = (x, y) in T such that
level(e) = min

(
level(x), level(y)

)
.

• LA(u, k) : The ancestor of u at level k in tree T .

We explicitly maintain the level of each vertex during the algorithm. Since the tree grows
from the root in the downward direction, a vertex u is said to be at higher level than
vertex v if level(u) < level(v). Similarly an edge e is said to be higher than edge e′ if
level(e) < level(e′).
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We also maintain the following information about the DFS tree T during the algorithm.

• Each vertex v keeps a pointer to par(v). For the root r, par(r) = r.

• For each v ∈ T , we keep a list of all its children in tree T . This facilitates the
traversal of T (v) from the vertex v.

• Each vertex v keeps a list B(v) which consists of all the back edges that originate from
T (v) and terminate at par(v). This, apparently uncommon and perhaps unintuitive,
way of keeping the back edges leads to efficient implementation of the rerooting
procedure. B(v) is maintained as a circular linked list to enable merging of two lists
in O(1) time.

Our algorithm uses the following results for the dynamic version of the Lowest Common
Ancestor (LCA) and the Level Ancestors (LA) problems.

Theorem 2.1 (Cole and Hariharan 2005 [CH05]). There exists a dynamic data structure
for a rooted tree T that uses linear space and can report LCA(x, y) in O(1) time for any
two vertices x, y ∈ T . The data structure supports insertion or deletion of any leaf node
in O(1) time.

Theorem 2.2 (Alstrup and Holm 2000 [AH00]). There exists a dynamic data structure
for a rooted tree T that uses linear space and can report LA(u, k) in O(1) time for any
vertex u ∈ T . The data structure supports insertion of any leaf node in O(1) time.

The data structure for the Level Ancestor problem, as stated in Theorem 2.2, can be
easily extended to handle the deletion of a leaf node in amortized O(1) time using the
standard technique of periodic rebuilding.

2.3 Overview of the algorithm

Our algorithm is based on two principles. The first principle, called monotonic fall of
vertices, ensures that the level of a vertex may only fall or remain the same as the edges
are inserted. Consider insertion of a cross edge (x, y) as shown in Figure 2.1. In order to
ensure monotonic fall, the following strategy is used. If level(y) ≤ level(x), then we
reroot T (v) at y and hang it through edge (x, y). Otherwise, we reroot T (u) at x and
hang it through edge (y, x). This strategy surely leads to a fall in the level of x (or y).
However, this rerooting has to be followed by transformation of T (v) into a DFS tree. An
obvious, but inefficient, way to do this transformation is to perform a fresh DFS traversal
on T (v) from x as done by Franciosa et al. [FGN97] in case of DAG. Moreover, such a
traversal may violate the monotonic fall of some vertices in T (v). We are able to avoid
this costly step using our second principle called minimal restructuring. Following this
principle, only a path of the subtree T (v) is reversed and as a result, major portion of
the original DFS tree remains intact. In fact, this principle also facilitates monotonic fall
of all vertices of T (v). The rerooting procedure based on this principle is described and
analyzed in the following section.

Our algorithm updates DFS tree upon insertion of any cross edge as follows. Firstly,
we carry out rerooting based on the two principles mentioned above. As a result, many
back edges now potentially become cross edges. All these edges are collected in a pool,
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virtually (re)-inserted back into the graph one by one, and processed as fresh insertions.
This simple iterative algorithm, when analyzed in a straightforward manner, has a time
complexity O(mn). However, using a more careful analysis, it can be shown that its
time complexity is O(n3/2m1/2), which is strictly sub-cubic. We also present a worst case
example proving the tightness of this analysis. In order to improve the time complexity
further, we process the pool of cross edges in a more structured manner. In particular, we
process the highest cross edge first. This leads to our final algorithm that achieves O(n2)
time complexity for any arbitrary sequence of edge insertions. Subsequently, we also prove
that this is the best possible time complexity even for sparse graphs that can be achieved
by any algorithm that is based on monotonic fall . To establish this fact, we present a
sequence of Θ(n) edge insertions for which such that any algorithm abiding monotonic
fall, that maintains a DFS tree explicitly, would require Ω(n2) total time.

2.4 Rerooting a Subtree

Consider insertion of an edge (x, y) which happens to be a cross edge with respect to the
DFS tree T . Let w be LCA of x and y, and let u and v be the two children of w such
that x ∈ T (u) and y ∈ T (v). Let level(y) ≤ level(x). See Figure 2.2 for a visual
description. As discussed earlier, updating the DFS tree upon insertion of the cross edge
(x, y) entails rerooting of subtree T (v) at y and hanging it from x. We now describe an
efficient rerooting procedure for this task based on the principle of minimal restructuring.

The underlying idea of minimal restructuring is to preserve the current tree structure
as much as possible. Consider the path path(y, v) = 〈z1(= y), z2, . . . , zk(= v)〉. This path
appears from v to y in the rooted tree T . Our rerooting procedure reverses this path in
T , such that it now starts at y and terminates at v (see Figure 2.2). In order to see how
this reversal affects the DFS structure, let us carefully examine T (v).

The subtree T (v) can be visualized as a collection of disjoint trees hanging from
path(v, y) as follows. Let T1 denote the subtree T (y) and let T2 denote the subtree
T (z2)\T (z1). In general, Ti denotes the subtree T (zi)\T (zi−1). Upon reversing path(v, y),
notice that each subtree remains intact but their ordering gets reversed. Further, the level
of each vertex in every subtree Ti surely falls (see Figure 2.2). Let us find the consequence
of reversing path(v, y) on all the back edges with at least one endpoint in T (v). Observe
that the back edges which originate as well as terminate within the same Ti continue to
remain as back edges since tree Ti remains intact. Likewise, any back edge from these sub-
trees which terminates at any ancestor of v also continues to remain a back edge. However,
the back edges originating in T (v) and terminating on w

(
i.e., LCA(x, y)

)
, which were

earlier stored in B(v), will now have to be stored in B(u). Recall that B(v) contains the
back edges that originate from T (v) and terminate at par(v). Also, notice that the tree
edge (w, v) now becomes a back edge and has to be added to B(u). The remaining back
edges are only those which originate from some Ti and terminate at some zj , j > i. All
these edges are present in B(zj−1). Some of these back edges may become cross edges due
to the reversal of path(v, y) (see Figure 2.2). Their presence violates the DFS property
of the new tree. We simply collect these edges in a set ER and remove them temporarily
from the graph. In summary, our rerooting algorithm just does the following: It traverses
path(v, y) from y to v, collects B(zj) for each 1 ≤ j < k in ER, and reverses path(v, y).
The pseudocode of the rerooting process is described in Procedure Reroot. The following
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Figure 2.2: Rerooting the tree T (v) at y and hanging it from x. Notice that some back edges may
become cross edges (shown dotted in red) due to this rerooting.

lemma follows from the above discussion.

Lemma 2.4.1. Tree T at the end of Procedure Reroot is a DFS tree for the graph
(V,E\ER).

We introduce some terminology to facilitate compact and clean reference to the entities
of the rerooting procedure. The lower and higher end vertices x and y of the inserted edge
(x, y) are called prime and conjugate vertices respectively. Notice that the restructured
subtree now hangs from the prime vertex. We define prime path as the path from the
prime vertex x to u and conjugate path as the path from conjugate vertex y to v, where
u and v are children of LCA(x, y) s.t. x ∈ T (u) and y ∈ T (v).

Each vertex of the subtree T (v) suffers a fall in its level due to Procedure Reroot. We
shall now calculate this fall exactly. Let ∆ = level(x) − level(y). As a result of the
rerooting, y has become child of x. Hence it has suffered a fall in its level by ∆ + 1. Since
T1 = T (y) and T1 remains intact, so each vertex of T1 also suffers the same fall (of ∆ + 1
levels) as y. Consider a vertex zi which is the root of Ti for some i > 1. This vertex was
earlier at level i− 1 higher than y(= z1) and now lies at i− 1 level below y. Hence overall
level of zi (and hence that of every vertex of Ti) has fallen by ∆ + 2i− 1. This leads us to
the following lemma.

Lemma 2.4.2. Let ∆ be the difference in the levels of prime and conjugate vertices before
rerooting. After rerooting, the ith vertex on the conjugate path (starting from the conjugate
vertex) falls by ∆ + 2i− 1 levels.

Let us analyze the time complexity of Procedure Reroot. It first adds B(v) to B(u);
this step takes O(1) time since we are merging two lists. It then also adds the edge (w, v)
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Procedure Reroot(u,v,x,y): reroots subtree T (v) at vertex y and hangs it through
edge (x, y). It also updates the data structure B for u and every vertex on path(y, v),
where u is the sibling of v s.t. x ∈ T (u). It returns the set of back edges ER which
could potentially be cross edges after rerooting.

1 B(u)← B(u) ∪ B(v) ∪ {(par(v), v)};
2 ER ← φ;
3 z ← y ; /* z is the first vertex of path(y, v) */

4 p← x;
5 while z 6= par(v) do
6 if z 6= v then ER ← ER ∪ B(z);
7 B(z)← φ;
8 next← par(z);
9 par(z)← p ; /* updating the parent of z */

10 p← z;
11 z ← next ; /* z is now the next vertex on path(y, v) */

12 end
13 Return ER

to B(u). Thereafter, the procedure traverses (and reverses) the conjugate path path(y, v),
and collects the edges B(z) for each z ∈ path(y, v)\{v} in ER. Hence, we can state the
following lemma.

Lemma 2.4.3. The time complexity of Procedure Reroot is O(k + |ER|), where k is the
length of the conjugate path and ER is the set of edges returned by the procedure.

It follows from the rerooting procedure that any back edge getting converted to a cross
edge is surely collected in ER. However, not all the edges collected in ER necessarily become
cross edges after Procedure Reroot. In order to understand this subtle point, observe that
ER contains all those edges which originate from some vertex in Ti and terminate at some
zj , i < j < k. Consider any such edge (a, zj), a ∈ Ti. If a 6= zi (root of Ti), then surely
(a, zj) has become a cross edge after reversal of path(v, y). But if a = zi, then it still
remains a back edge. So we can state the following lemma which will be crucial in our
final algorithm.

Lemma 2.4.4. If an edge collected in ER is a back edge with respect to the modified DFS
tree, then both its endpoints must belong to the conjugate path.

2.5 Algorithm for Incremental DFS

We now describe our algorithm for incremental maintenance of a DFS tree. Consider the
insertion of an edge (t, z). In order to update the DFS tree, our algorithm maintains
a set E of edges which is initialized as {(t, z)}. The algorithm then processes the set
E iteratively as follows. In each iteration, an edge

(
say (x, y)

)
is extracted from E using

Procedure Choose. If the edge is a back edge, the edge is inserted in the set of back edges B
accordingly and no processing is required. If (x, y) is a cross edge, it is processed as follows.
Let w be LCA of x and y, and let v be the child of w such that y is present in subtree
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T (v). Without loss of generality, let level(x) ≥ level(y). Procedure Reroot(u, v, x, y)
is invoked which reroots subtree T (v) at y and returns a set of edges collected during
the procedure. All these edges are extracted from E and added to E . This completes
one iteration of the algorithm. The algorithm terminates when E becomes empty (see
Algorithm 1 for pseudocode). The correctness of the algorithm follows directly from the
following invariant which is maintained throughout the algorithm:

Invariant: T is DFS tree for the subgraph (V,E\E).

Algorithm 1: Processing insertion of an edge (t, z)

1 E ← {(t, z)} ; /* E is a set of edges to be inserted. */

2 while E 6= φ do
3 (x, y)← Choose(E) ; /* Let level(x) ≥ level(y). */

4 w ← LCA(x, y);
5 u← LA(x, level(w) + 1) ; /* u is the child of w s.t. x ∈ T (u) */

6 v ← LA(y, level(w) + 1) ; /* v is the child of w s.t. y ∈ T (v) */

7 if w 6= y then /* (x, y) is a cross edge. */

8 E ← E∪ Reroot(u, v, x, y);
9 end

10 end

Procedure Choose(E): Chooses and returns an edge from E .

Remove an arbitrary edge (x, y) from E .
Return (x, y).

Furthermore, the LCA and LA data structures introduced in Theorem 2.1 and Theo-
rem 2.2 have to be updated after every iteration of the algorithm. Also, since we maintain
the level of each vertex explicitly, level(z) has to be updated for each z ∈ T (v). Following
section describes how to perform these updates efficiently.

2.5.1 Maintaining LCA and LA dynamically

Algorithm 1 requires us to answer LCA and LA queries efficiently. The data structures
introduced in Theorem 2.1 and Theorem 2.2 maintain LCA and LA in the dynamic setting
and answer each query in O(1) time. These data structures allow only leaf updates in the
underlying tree (in our case T ). However, Procedure Reroot inserts an edge (x, y) and
deletes an edge (w, v) in T that leads to rerooting the subtree T (v) at the vertex y (see
Figure 2.2). These edges may not be the leaf edges hence these operations are not directly
supported by these data structures.

To perform these updates all the edges in T (v) are deleted by iteratively deleting the
leaves of T (v). Now, the subtree T (y) is rebuilt at y iteratively by a series of leaf insertions.
We know that each vertex in T (v) falls by at least one level during the rerooting event.
Note that each falling vertex leads to exactly one leaf insertion and exactly one leaf deletion
during this update process, each taking O(1) amortized time. Also, for every falling vertex
z ∈ T (v) we can update level(z) in O(1) time. Since each vertex can fall at most n times
during the algorithm (ensured by monotonic fall), the overall time taken to maintain these
data structures (for maintaining level, LCA and LA) throughout the algorithm is O(n2).
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2.5.2 Analysis

The computation cost of collecting and processing each edge e ∈ E can be associated with
the rerooting event in which it was collected. Thus, the time spent by the incremental
algorithm in processing any sequence of edge insertions is of the order of the time spent
in all the rerooting calls invoked and the time spent in maintaining the data structures
level, LCA and LA. Furthermore, using Lemma 2.4.3 we know that the time spent in
Procedure Reroot is of the order of the number of edges in ER that were collected during
the rerooting event and the length of the corresponding conjugate path. However, the cost
of traversing the conjugate path can be associated with the fall of vertices on the conjugate
path. Therefore, in order to calculate the time complexity of the algorithm, it suffices to
count all the edges collected during various rerooting calls and the cost associated with
the fall of vertices. Note that this count of collected edges can be much larger than O(m)
because an edge can appear multiple times in E during the algorithm. As described earlier
in Section 2.5.1, the overall cost associated with the fall of vertices is O(n2). It follows
from Lemma 2.4.2 that whenever an edge is collected during a rerooting call, the level
of at least one of its endpoints falls. Since level of any vertex can fall only up to n, it
follows that the computation associated with a single edge during the algorithm is of the
order of n. Hence, the O(mn) time complexity of the algorithm is immediate. However,
using a more careful insight into the rerooting procedure, we shall now show that the time
complexity is much better.

Consider any execution of the rerooting procedure. Let 〈(y =)z1, z2, . . . , zk(= v)〉 be
the path that gets reversed during the rerooting process (see Figure 2.2). The procedure
collects the edges B(zi) for each i < k. We shall now charge each edge collected to the fall
of one of its endpoints. Let τ be a parameter whose value will be fixed later. Consider
any edge (a, zi) that is collected during the rerooting process. Note that level of each of
a and zi has fallen due to the rerooting. If i ≤ τ , we charge this edge to the fall of vertex
a. In this way, there will be at most τ edges that get charged to the fall of a. If i > τ ,
we charge this edge to the fall of zi. It follows from Lemma 2.4.2 that zi falls by at least
2i− 1 > τ levels in this case.

Consider any vertex v in the graph. During a single rerooting event if v falls by less
than τ levels, we call it a short fall; otherwise we call it a long fall for v. It follows that
v can be charged for O(τ) edges in each of its short falls. The number of short falls for
v is O(n), so overall cost charged to v due to all its short falls is O(nτ). On the other
hand, v can be charged for O

(
deg(v)

)
edges in each of its long falls. The number of long

falls of v during the entire algorithm is less than n/τ . So the overall cost charged to all
the long falls of v will be O(deg(v) · n/τ). Hence for all vertices, the total computation
charged will be O(n2τ + mn/τ). Fixing τ =

√
m/n, we can conclude that the overall

computation performed during processing of any sequence of m edge insertions by the
algorithm is O(n3/2m1/2).

Theorem 2.3. For an undirected graph G on n vertices, a DFS Tree can be maintained
incrementally in O(n3/2m1/2) total time for any arbitrary sequence of edge insertions.

It follows from Theorem 2.3 that even for any sequence of Θ(n2) edge insertions, the
total update time in maintaining DFS tree is O(n2.5) which is strictly sub-cubic. In the
following section we describe an example to demonstrate the tightness of our analysis.
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Figure 2.3: Example to demonstrate the tightness of the analysis of Algorithm 1. (a) Beginning
of a phase with vertex sets A, B and X. (b) Phase begins with addition of two vertex sets C and
D. The first stage begins with the addition of the back edge (a1, bk+1) and the cross edge (b1, ck).
(c) The rerooted subtree with the edges in A × X and (bk+1, a1) as cross edges. (d) Final DFS
tree after the first stage. (e) Final DFS tree after first phase. (f) New vertex sets A′, B′ and X
for the next phase.

2.5.3 Tightness of analysis

We now describe a sequence of Θ(m) edge insertions for which Algorithm 1 takes Θ(n3/2m1/2)
time. Consider a graph G = (V,E) where the set of vertices V is divided into two sets
V ′ and I, each of size Θ(n). The vertices in V ′ are connected in the form of a chain

(
see

Figure 2.3 (a)
)

and the vertices in I are isolated vertices. Thus, it is sufficient to describe
only the maintenance of DFS tree for the vertices in set V ′, as the vertices in I will exist
as isolated vertices connected to the dummy vertex s in the DFS tree (recall that s is the
root of the DFS tree).

We divide the sequence of edge insertions into np phases, where each phase is further
divided into ns stages. At the beginning of each phase, we identify three vertex sets from
the set V ′, namely A = {a1, ..., ak}, B = {b1, ..., bl} and X = {x1, ..., xp}, where k, l, p ≤ n
are integers whose values will be fixed later. The value of l is p in the first phase and
decreases by k in each subsequent phase. Figure 2.3 (a) shows the DFS tree of the initial
graph. We add pk edges of the set A ×X to the graph. Clearly, the DFS tree does not
change since all the inserted edges are back edges. Further, we extract two sets of vertices
C = {c1, ..., ck} and D = {d1, ..., dk} from I and connect them in the form of a chain as
shown in Figure 2.3 (b).

Now, the first stage of each phase starts with the addition of the back edge (a1, bk+1)
followed by the cross edge (b1, ck). As a result Algorithm 1 will reroot the tree T (a1) as
shown in the Figure 2.3 (c)

(
extra O(1) vertices from I are added to C to ensure the fall

of T (a1) instead of T (c1)
)
. This rerooting makes (bk+1, a1) a cross edge. Moreover, all pk
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edges of set A ×X also become cross edges. Algorithm 1 will collect all these edges and
add them to E in Ω(pk) time. Since the algorithm can process the edges in E arbitrarily,
it can choose to process (bk+1, a1) first. It will result in the final DFS tree as shown in
Figure 2.3 (d), converting all the cross edges in A×X to back edges and bringing an end
to the first stage. Note the similarity between Figure 2.3 (b) and Figure 2.3 (d): the set
C is replaced by the set D, and the set D is replaced by the top k vertices of B. Hence, in
the next stage the same rerooting event can be repeated by adding the edges (ak, b2k+1)
and (bk+1, dk), and so on for the subsequent stages. Now, in every stage the length of B
decreases by k vertices. Hence, the stage can be repeated ns = O(l/k) times in the phase,
till A reaches next to X as shown in Figure 2.3 (e). This completes the first phase. Now,
in the next phase, first k vertices of the new tree forms the set A′ followed by the vertices
of B′ leading up to the previous A as shown in Figure 2.3 (f). Since the initial size of I is
Θ(n) and the initial size of B is l < n, this process can continue for np = O(l/k) phases.
Hence, each phase reduces the size of I as well as B by k vertices.

Hence, at the beginning of each phase, we extract 2k isolated vertices from I and add
pk edges to the graph. In each stage, we extract O(1) vertices from I and add just 2 edges
to the graph in such a way that will force our algorithm to process pk edges to update the
DFS tree. Thus, the total number of edges added to the graph is pk ·np and the total time
taken by our algorithm is pk · np · ns, where np = O(l/k) and ns = O(l/k). Substituting
l = n, p = m/n and k =

√
m/n, we have a sequence of m edge insertions for which our

algorithm takes Θ(n3/2m1/2). Hence for any n ≤ m ≤
(
n
2

)
, we get the following theorem.

Theorem 2.4. For each value of n ≤ m ≤
(
n
2

)
, there exists a sequence of m edge insertions

for which Algorithm 1 requires Θ(n3/2m1/2) time to maintain the DFS tree.

Remark: The core of this example is the rerooting event occurring in each stage that
takes Θ(m3/2/n3/2) time. This event is repeated systematically ns · np times to force the
algorithm to take Θ(n3/2m1/2) time. However, this is possible only because our algorithm
processes E arbitrarily: processing the cross edge (bk, a1) first amongst all the collected
cross edges. Note that, had the algorithm processed any other cross edge first, we would
have reached the end of a phase in a single stage. The overall time taken by the algorithm
for this example would then be just Θ(m). Interestingly, with just a more structured way
of processing the edges of E , we can even achieve a worst case bound of O(n2) for our
algorithm. We provide this improved algorithm in the following section.

2.6 Achieving O(n2) update time

The time complexity of Algorithm 1 is governed by the number of edges in E that are
processed during the algorithm. In order to get an improved algorithm, let us examine
E carefully. An edge from E can be a cross edge or a back edge. Processing of a cross
edge always triggers a rerooting event which, in turn, leads to fall of one or more vertices.
Hence, the total number of cross edges processed during the algorithm is O(n2). All the
remaining edges processed in E during the entire algorithm are back edges. There are two
sources of these back edges.

Firstly, some edges added to E by Procedure Reroot are back edges. Let us analyze
their count throughout the algorithm. It follows from Lemma 2.4.4 that both endpoints
of each such back edge belong to the conjugate path associated with the rerooting event.
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Notice that ith vertex on the conjugate path falls by at least 2i − 1 levels (see Lemma
2.4.2). So, if ` is the length of the conjugate path, the total fall in the level of all vertices
on the conjugate path is more than `(` − 1)/2, which is also an upper bound on the
number of edges with both endpoints on the conjugate path. Since the total fall in the
level of vertices cannot be more than O(n2), the number of such back edges throughout
the algorithm is O(n2).

Secondly, some edges added to E by Procedure Reroot are cross edges at the time of
their collection, but become back edges before they are processed. This may happen due
to rerooting initiated by some other cross edge from E . In order to understand this subtle
point, see Figure 2.4. Here e1, e2, e3, e4 and e5 = (x, y) are cross edges present in E at
some stage. While we process (x, y), T (v) gets rerooted at y and hangs through the edge
(x, y). As a result e1, e2, e3 and e4 become back edges.
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Figure 2.4: Some cross edges in E become back edges due to the rerooting of T (v).

In order to bound these cross edges getting transformed into back edges during reroot-
ing of T (v), let us carefully examine one such cross edge. Let vh and vl be respectively
the higher and lower endpoints of the resulting back edge. The edge (vh, vl) was earlier
a cross edge, so vh now has a new descendant vl. Similarly vl now has a new ancestor
vh. Note that the descendants of only vertices lying on prime and conjugate paths are
changed during rerooting. Also the ancestors of only the vertices in T (v) are changed
during rerooting. Hence the following lemma holds true.

Lemma 2.6.1. Cross edges getting converted to back edges as a result of rerooting T (v)
are at most |T (v)| times the sum of lengths of prime and conjugate paths.

Observe that the total sum of the fall of vertices of T (v) during the rerooting event
is at least |T (v)| · (∆ + 1) (see Figure 2.4). However, the sum of the lengths of prime
and conjugate paths may be much greater than ∆ + 1. Hence, the number of cross edges
getting transformed into back edges is not bounded by the total sum of fall of vertices
of T (v). This observation, though discouraging, also gives rise to the following insight:
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If there were no cross edges with level higher than level(y), the number of cross edges
converted to back edges will be at most the total sum of fall of vertices of T (v). This is
because the possible higher endpoints of such edges on the prime or conjugate path will
be limited. This insight suggests that processing higher cross edges from E first will be
more advantageous than the lower ones. Our final algorithm is inspired by this idea.

2.6.1 The final algorithm

Our final algorithm is identical to the previous algorithm in Section 2.5 except that instead
of invoking Procedure Choose we invoke Procedure ChooseHigh.

Procedure ChooseHigh(E): Chooses and returns the highest edge in E .

Remove the highest edge (x, y) from E .
Return (x, y).

The algorithm thus processes the edges of set E in a non-decreasing order of their
levels. To achieve this we require a data structure that maintains E and allows retrieval of
edges in the desired order. This data structure should also support insertion of new edges
and change in the level of edges due to fall of a vertex efficiently.

This can be achieved by keeping a binary heap on endpoints of the edges in E , where
the key of each endpoint is its level in T . Thus, each of the two operations mentioned above
can be performed in O(log n) time taking total O(n2 log n) time throughout the algorithm.
However, this can be improved to total O(n2) time using a simple data structure that is
described in the following section.

2.6.2 Data Structure to maintain set of edges E
Our data structure is an array H, where H[i] (i ∈ [1, n]) stores a list of all the vertices at
level i that have at least one of its edges in E . In addition, each vertex v stores a list L(v)
of all its edges that are present in E . It can be observed that upon insertion of an edge in
E or update in the level of a vertex in T , H can be updated in O(1) time.

Consider insertion of any cross edge, say e = (x, y) in the graph. Initially the data
structure H is empty. We insert x and y at their corresponding levels in H. We then add
e to both L(x) and L(y), and also store its pointers in the lists L(x) and L(y) to facilitate
its deletion from these lists in O(1) time. We now start a scan of H from level(e) to
process the edges in E in a non-decreasing order of their levels as follows.

Suppose i is the currently scanned index of H. If H[i] is non-empty, we process edges
of L(v) for each v ∈ H[i] one by one. Processing of an edge may cause a rerooting
event that may result in addition of new edges to E . We insert these edges and their
corresponding endpoints in H accordingly. In addition, this rerooting may result in the
fall of some vertices already present in H. We move these vertices to their new position in
H accordingly. After processing an edge, say e = (u, v), e is removed from L(u) and L(v).
If L(u)

(
likewise L(v)

)
becomes empty, we remove u (likewise v) from H. As a result, all

the vertices in H[i] will be removed and H[i] will become empty. Notice that all the edges
collected in E during any rerooting event that occurs while processing H[i] will be at a
level lower than i. This is because all these collected edges will be from the subtree now
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hanging from the edge that caused the rerooting event. Thus, we just need to continue
scanning H[i] for increasing values of i until E becomes empty.

It follows that the data structure H facilitates processing of the edges in E in non-
decreasing order of their levels. It requires O(1) time for inserting an edge in E and
updating the level of a vertex. The only overhead in maintenance of H is the time required
for scanning through the cells of H. This factor becomes significant only when a lot of
empty cells have to be scanned in H to find the next highest edge in E . This cost can be
charged to the fall of endpoints of edges in E as follows. Consider any edge e ∈ E which
is collected during a rerooting event caused by processing some edge, say e0. The level of
edge e may fall several times before it is finally processed and removed from E . The entire
cost of scanning through H from level(e0) to the eventual level of e when it is finally
processed is charged as follows. After the rerooting event caused by processing e0, the
difference between level(e0) and level(e) is always less than the fall of the endpoint of
e on the conjugate path. Any subsequent change in level(e) will be charged to the fall
of that endpoint of e which led to this change. Hence, the time spent in scanning through
H during the entire algorithm is bounded by the total sum of fall of vertices in T , which
is O(n2).

2.6.3 Analysis

In order to establish O(n2) bound on the running time of our final algorithm, it follows
from the preceding discussion that we simply need to show that the number of cross edges
getting converted to back edges throughout the algorithm is O(n2).

Consider any rerooting event initiated by cross edge (x, y) (refer to Figure 2.4). Since
there is no edge in E which is at a higher level than level(y), so it follows from Lemma
2.6.1 that the cross edges getting converted to back edges during the rerooting event will
be of one of the following types only.

• The cross edges with one endpoint in T (v) and another endpoint x or any of ∆
ancestors of x.

• The cross edges with y as one endpoint and another endpoint anywhere in T (v)\T (y).

Hence the following lemma holds for our final algorithm.

Lemma 2.6.2. During the rerooting event the number of cross edges converted to back
edges are at most |T (v)| · (∆ + 1) + |T (v)\T (y)|.

According to Lemma 2.4.2, level of each vertex of T (v) falls by at least ∆ + 1. So the
first term in Lemma 2.6.2 can be clearly associated with the fall of each vertex of T (v).
Note that each vertex in T (v)\T (y) becomes a descendant of y and hence falls by at least
one extra level (in addition to ∆ + 1). This fall by extra one or more levels for vertices of
T (v)\T (y) can be associated with the second term mentioned in Lemma 2.6.2. Hence the
total number of cross edges getting transformed to back edges during the algorithm is of
the order of O(n2). We can thus state the following theorem.

Theorem 2.5. For an undirected graph G on n vertices, a DFS Tree can be maintained
under insertion of any arbitrary sequence of edges with total update time of O(n2).



34

The O(n2) bound of our algorithm is quite tight even for sparse graphs. In fact, in
the next section we show the following: There exists a sequence of Θ(n) edge insertions
such that every incremental algorithm for maintaining DFS tree explicitly (using parent
or child pointers) that follows the principle of monotonic fall will require Ω(n2) time.

2.6.4 Limitations of monotonic fall

t tt
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v vv
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x
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x

y y
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w ww

(a) (b) (c) (d)

n/2
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Figure 2.5: Example to show tightness of analysis.

Consider a graph on n vertices with n/2− 3 isolated vertices in the beginning, and a
set P of n/2 vertices hanging from a vertex x. Let par(x) = y and par(y) = z, and each
vertex in P has a back edge to y

(
see Figure 2.5(a)

)
. Now use 4 isolated vertices t, u, v, w,

and connect them using the edges (z, t), (t, u), (u, v), (v, w) followed by insertion of edge
(w, x)

(
see Figure 2.5(b)

)
. If the algorithm follows monotonic fall, it must hang y from x(

see Figure 2.5(c)
)

and then eventually hang P from y
(
see Figure 2.5(d)

)
. This creates

a structure similar to the original tree shown in Figure 2.5(a). This process changes n/2
tree edges and hence requires at least Ω(n) time. This step can be repeated n/8 times.
Hence, overall inserting Θ(n) edges will require Ω(n2) time proving the following theorem.

Theorem 2.6. Any incremental algorithm that follows the principle of monotonic fall,
will require a total update time of Ω(n2) for maintaining a DFS Tree explicitly even for
sparse graphs.

2.7 Discussion

We presented a simple and efficient algorithm for maintaining a DFS tree for an undirected
graph under insertion of edges. Further, the data structures used by our algorithm (except
for that of LCA and LA) are very simple and easy to implement. These salient features
make our algorithm an ideal candidate for practical applications.

Even though the amortized update time of our algorithm is optimal for dense graphs,
for sparse graphs it is no better than recomputing the DFS tree from scratch after ev-
ery update. Moreover, we also proved that any algorithm that employs the principle of
monotonic fall will require Ω(n2) time to maintain incremental DFS tree explicitly even
for sparse graphs. Hence, a totally new approach would be required to improve the result
for sparse graphs.
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Another, perhaps more significant, research direction would be to develop an algo-
rithm for maintaining DFS tree of a directed graph in any dynamic setting. The current
techniques are not applicable in this case, because of the following reasons. Firstly, due
to lack of flexibility to choose the orientation of the inserted edge, monotonic fall cannot
be ensured directly as in case of undirected graphs. Secondly, simple reversal of a path,
which was the basis of minimal restructuring, is not possible in case of directed graphs.
Finally, the simplicity of performing the rerooting of a subtree by recursively performing
rerooting of independent subtrees is not evident in case of directed graphs.





Chapter 3

Dynamic DFS with worst case
bounds

3.1 Introduction

Prior to this work, very little progress was achieved for maintaining a DFS tree in differ-
ent dynamic settings. The only known algorithms were by Franciosa et al. [FGN97] and
Baswana and Choudhary [BC15] for maintaining incremental and decremental DFS tree
respectively in a directed acyclic graph under edge updates. Even our prior work (see
Chapter 2) maintained incremental DFS tree for an undirected graph only under edge in-
sertions. However, none of these existing algorithms, though designed for only a partially
dynamic environment, achieve a worst case bound of o(m) on the update time. Further-
more, none of these results truly differentiates the hardness of general DFS from ordered
DFS in the dynamic environment (see Section 1.4). This is because efficient amortized
bounds does not refute the possibility of a complete recomputation in the worst case after
an update, resulting in the conjectured O(m) barrier for general DFS as well. Finally, none
of the previous results, though significant in theory, was able to demonstrate applications
of DFS trees in the dynamic setting, as was the case in the static setting.

In this chapter, we present dynamic DFS algorithms with o(m) worst case update time
for undirected graphs in the fault tolerant, incremental and fully dynamic settings. Fur-
ther, our fault tolerant and fully dynamic algorithms handle both edge and vertex updates,
where a vertex can be inserted with an arbitrary set of edges incident on it. Moreover, our
results finally prove that general DFS is indeed not as hard as ordered DFS in the dynamic
setting. Finally, we use our fully dynamic DFS algorithm to provide efficient solutions for
a couple of well studied dynamic graph problems as connectivity, 2-edge connectivity and
biconnectivity in the dynamic subgraph model. Our algorithm, in particular, improves the
deterministic worst case bounds for these problems, thus demonstrating the relevance of
DFS trees in solving dynamic graph problems. We also present conditional lower bounds
for dynamic DFS under both edge and vertex updates.

For a given set U of edge/vertex updates, our main idea is use T itself, by preprocessing
the graph G using tree T to build a data structure D. To achieve o(m) update time, our
algorithm uses D to create a reduced adjacency list for each vertex such that performing
DFS traversal using these lists gives a DFS tree of the updated graph G + U . These
reduced adjacency lists are generated on the fly and necessarily have only Õ(n|U |) edges.
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3.2 Preliminaries

Let U be any given set of updates. We add a dummy vertex r to the given graph in the
beginning and connect it to all the vertices. Our algorithm starts with any arbitrary DFS
tree T rooted at r in the augmented graph and it maintains a DFS tree rooted at r at
each stage. It can be observed easily that each subtree rooted at any child of r is a DFS
tree of a connected component of the graph G+ U . The following notations will be used
throughout the chapter.

• distT (x, y) : The number of edges on the path from x to y in T .

• N(w) : The adjacency list of vertex w in the graph G+ U .

• L(w) : The reduced adjacency list of vertex w in the graph G+ U .

We now state the operations supported by the data structure D (complete details of
D are in Section 3.4). Let U below refer to a set of updates that consists of vertex and
edge deletions only. For any three vertices w, x, y ∈ T , where path(x, y) is an ancestor-
descendant path in T the following two queries can be answered using D in O(log3 n)
time.

1. Query(w, x, y) : among all the edges from w that are incident on path(x, y) in G+U ,
return an edge that is incident nearest to x on path(x, y).

2. Query(T (w), x, y) : among all the edges from T (w) that are incident on path(x, y)
in G+ U , return an edge that is incident nearest to x on path(x, y).

We now describe an important property of a DFS traversal that will be crucially used
in our algorithm.

Properties of a DFS tree

DFS traversal has the following flexibility : when the traversal reaches a vertex, say v,
the next vertex to be traversed can be any unvisited neighbor of v. In order to compute
a DFS tree for G + U efficiently, our algorithm exploits this flexibility, the original DFS
tree T , and the following property of DFS traversal.

r

w

v

C1

C2

e1

e′1

e2

e′2

Figure 3.1: Edges e′1 as well as e′2 can be ignored during the DFS traversal.
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Lemma 3.2.1 (Components Property). Let T ∗ be the partially grown DFS tree and v be
the vertex currently being visited. Let C be any connected component in the subgraph in-
duced by the unvisited vertices. Suppose two edges e and e′ from C are incident respectively
on v and some ancestor (not necessarily proper) w of v in T ∗. Then it is sufficient to
consider only e during the rest of the DFS traversal, i.e., the edge e′ need not be scanned.
(Refer to Figure 3.1).

Skipping e′ during the DFS traversal, as stated in the components property, is justified
because e′ will appear as a back edge in the resulting DFS tree. A similar property
describing the inessential edges of a DFS trees was used by Smith [Smi86] for computing
a DFS tree of a planar graph in the parallel setting. In order to highlight the importance
of the components property, and to motivate the requirement of data structure D, we first
consider a simpler case which deals with reporting a DFS tree after a single update in the
graph.

3.3 Handling a single update

Consider the failure of a single edge (b, f) (refer to Figure 3.2 (i)). Exploiting the flexibility
of DFS traversal, we can assume a stage in the DFS traversal of G\{(b, f)} where the
partial DFS tree T ∗ is T\T (f) and vertex b is currently being visited. Thus, the unvisited
graph is a single connected component containing the vertices of T (f). Now, according to
the components property we need to process only the lowest edge from T (f) to path(b, r)
((k, b) in Figure 3.2 (ii)). Hence, the DFS traversal enters this component using the edge
(k, b) and performs a traversal of the subgraph induced by the vertices of T (f). The
resulting DFS tree of this subgraph would now be rooted at k. Rebuilding the DFS
tree after the failure of edge (b, f) thus reduces to finding the lowest edge from T (f) to
path(e, r), and then rerooting a subtree T (f) of T at the new root k. We now describe
how this rerooting can be performed in Õ(n) time in the following section.
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Figure 3.2: (i) Failure of edge (b, f). (ii) Partial DFS tree T ∗ with unvisited graph T (f), component
property allows us to neglect (a, l). (iii) Augmented path(k, f) to T ∗, the components property
allows us to neglect (l, k). (iv) Final DFS tree of G\{(b, f)}.

3.3.1 Rerooting a DFS tree

Given a DFS tree T originally rooted at r0 and a vertex r′, the aim is to compute a DFS
tree of the graph that is rooted at r′. Note that any subtree T (x) of the DFS tree T is also
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a DFS tree of the subgraph induced by the vertices of T (x). Hence, the same procedure
can be applied to reroot a subtree T (x) of the DFS tree T . Thus, in general our aim is to
reroot T (r0) at a new root r′ ∈ T (r0) (see Figure 3.2 (ii), where the subtree T (f) would
be rerooted at its new root k).

Procedure Reroot(T (r0), r
′): Reroots the subtree T (r0) of T to be rooted at the

vertex r′ ∈ T (r0).

foreach (a, b) on path(r0, r
′) do /* a = par(b) in original tree T (r0). */

par(a)← b;
foreach child c of b not on path(r0, r

′) do
(u, v)← Query(T (c), r0, b) ; /* where u ∈ path(r0, r

′) and v ∈ T (c). */

if (u, v) is non-null then
Reroot(T (c), v);
par(v)← u;

end

end

end

Figure 3.3: The recursive algorithm to reroot a DFS tree T (r0) from the new root r′.

Our algorithm (refer to Procedure Reroot) essentially performs the DFS traversal
(exploiting the flexibility of DFS) in such a way that components of the unvisited graph
can be easily identified. The components property can then be applied to each such
component, processing only O(n) edges to compute the rerooted DFS tree. The DFS
traversal first visits the path from r′ to the root of tree T (r0). This reverses path(r0, r

′)
in the new DFS tree T ∗ as now r′ would be an ancestor of r0 (see Figure 3.2 (iii)). Now,
each subtree hanging from path(r′, r0) in T forms a component of the unvisited graph.
This is because the presence of any edge between these subtrees would imply a cross edge
in the original DFS tree. Using the components property we know that for each of these
subtrees, say Ti, we only need to process the lowest edge from Ti on the new path from r′

to r0 in T ∗. Since path(r′, r0) is reversed in T ∗, it is equivalent to processing the highest
edge ei from Ti to the path(r0, r

′) in T . Recall that this query can be answered by our data
structure D in O(log3 n) time (refer to Section 3.2). Now, let vi be the end vertex of ei in
Ti. The DFS traversal will thus visit the component induced by the vertices of Ti through
ei, and produces its DFS tree that is rooted at vi. This rerooting can be performed by
invoking the rerooting procedure recursively on the subtree Ti with the new root vi.

We now analyze the total time required by Procedure Reroot to reroot a subtree T ′

of the DFS tree T . The total time taken by our algorithm is proportional to the number
of edges processed by the algorithm. These edges include the tree edges that were a part
of the original tree T ′ and the added edges that are returned by the data structure D.
Clearly, the number of tree edges in T ′ are O(|T ′|). Also, since the added edges eventually
become a part of the new DFS tree T ∗, they too are bounded by the size of the tree T ′.
Further, the data structure D takes O(log3 n) time to report each added edge. Hence the
total time taken by our algorithm to rebuild T ′ is O(|T ′| log3 n) time. Since D can be
built in O(m log n) time (refer to Theorem 3.3 in the Section 3.4), we have the following
theorem.



41

Theorem 3.1. An undirected graph can be preprocessed to build a data structure in
O(m log n) time, such that any subtree T ′ of the DFS tree can be rerooted at any ver-
tex in T ′, in O(|T ′| log3 n) time.

We now formally describe how rebuilding a DFS tree after an update can be reduced
to this simple rerooting procedure (see Figure 3.4).

1. Deletion of an edge (u, v):
In case (u, v) is a back edge in T , simply delete it from the graph. Otherwise, let
u = par(v) in T . The algorithm finds the lowest edge (u′, v′) on the path(u, r) from
T (v), where v′ ∈ T (v). The subtree T (v) is then rerooted at its new root v′ and
hanged from u′ using (u′, v′) in the final tree T ∗.

2. Insertion of an edge (u, v):
In case (u, v) is a back edge, simply insert it in the graph. Otherwise, let w be the
LCA of u and v in T and v′ be the child of w such that v ∈ T (v′). The subtree T (v′)
is then rerooted at its new root v and hanged from u using (u, v) in the final tree
T ∗.

3. Deletion of a vertex u:
Let v1, ..., vc be the children of u in T . For each subtree T (vi), the algorithm finds
the lowest edge (u′i, v

′
i) on the path(par(u), r) from T (vi), where v′i ∈ T (vi). Each

subtree T (vi) is then rerooted at its new root v′i and hanged from u′i using (u′i, v
′
i) in

the final tree T ∗.

4. Insertion of a vertex u:
Let v1, ..., vc be the neighbors of u in the graph. Make u a child of some vj in T ∗. For
each vi, such that vi /∈ path(vj , r), let T (v′i) be the subtree hanging from path(vj , r)
such that vi ∈ T (v′i). Each subtree T (v′i) is then rerooted at its new root vi and
hanged from u using (u, vi) in the final tree T ∗.
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Figure 3.4: Updating the DFS tree after a single update: (i) deletion of an edge, (ii) insertion of
an edge, (iii) deletion of a vertex, and (iv) insertion of a vertex. The reduction algorithm reroots
the marked subtrees (shown in violet) and hangs it from the inserted edge (in case of insertion) or
the lowest edge (in case of deletion) on the marked path (shown in blue) from the marked subtree.

In case of vertex updates, multiple subtrees may be rerooted by the algorithm. Let
these subtrees be T1, ..., Tc. Thus, the total time taken by our algorithm is equal to the
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time taken to reroot the subtrees T1, ..., Tc. Using Theorem 3.1, we know that a subtree
T ′ can be rerooted in Õ(|T ′|) time. Since these subtrees are disjoint, the total time taken
by our algorithm to build the resulting DFS tree is Õ(|T1|+ ...+ |Tc|) = Õ(n). Thus, we
have the following theorem.

Theorem 3.2. An undirected graph can be preprocessed to build a data structure in
O(m log n) time such that after a single update in the graph, the DFS tree can be reported
in O(n log3 n) time.

3.4 Data Structure

The efficiency of our algorithm heavily relies on the data structure D. For any three
vertices w, x, y ∈ T , where path(x, y) is an ancestor-descendant path in T , we need to
answer the following two kinds of queries.

1. Query(w, x, y) : among all the edges from w that are incident on path(x, y) in G+U ,
return an edge that is incident nearest to x on path(x, y).

2. Query(T (w), x, y) : among all the edges from T (w) that are incident on path(x, y)
in G+ U , return an edge that is incident nearest to x on path(x, y).

We now describe construction of the data structure D. It employs a combination
of two well known techniques, namely, heavy-light decomposition [ST83] and suitable
augmentation of a binary tree (segment tree) as follows.

1. Perform a preorder traversal of tree T with the following restriction: Upon visiting a
vertex v ∈ T , the child of v that is visited first is the one storing the largest subtree.
Let L be the list of vertices ordered by this traversal.

2. Build a segment tree TB whose leaf nodes from left to right represent the vertices in
list L.

3. Augment each node z of TB with a binary search tree E(z), storing all the edges
(u, v) ∈ E where u is a leaf node in the subtree rooted at z in TB. These edges are
sorted according to the position of the second endpoint in L.

The construction of D described above ensures the following properties which are
helpful in answering a query Query(T (w), x, y) (see Figure 3.5).

• T (w) is present as an interval of vertices in L (by step 1). Moreover, this interval
can be expressed as a union of O(log n) disjoint subtrees in TB (by step 2). Let these
subtrees be TB(z1), . . . , TB(zq).

• It follows from the heavy-light decomposition used in step 1 that path path(x, y)
can be divided into O(log n) subpaths path(x1, y1), . . . , path(x`, y`) such that each
subpath path(xi, yi) is an interval in L.

• Let query Q(z, x, y) return the edge on path(x, y) from the vertices in the subtree
TB(z), that is closest to vertex x. Then it follows from step 3 that any query
Q(zj , xi, yi) can be answered by a single predecessor or successor query on BST
E(zj) in O(log n) time.
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Figure 3.5: (i) The highest edge from subtree T (w) on path(x, y) is edge (x, s) and the lowest
edges are edge (z, w) and (z, t). (ii) The vertices of T (w) are represented as union of two subtrees
in segment tree TB.

To answer Query(T (w), x, y), we thus find the edge closest to x among all the edges
reported by the queries {Q(zj , xi, yi)|1 ≤ j ≤ q and 1 ≤ i ≤ `}. Thus, Query(T (w), x, y)
can be answered in O(log3 n) time. Notice that Query(w, x, y) can be considered as a
special case where q = 1 and TB(z1) is the leaf node of TB representing w, i.e., z1 = w.
The space required by D is O(m log n) as each edge is stored at O(log n) levels in TB.
Now, the segment tree TB can be built in linear time. Further, for every node u ∈ TB, the
sorted list of edges in E(u) can be computed in linear time by merging the sorted lists of
its children. Thus, the binary search tree E(u) for each node u ∈ TB can be built in time
linear in the number of edges in E(u). Hence the total time required to build this data
structure is O(m log n). Thus, we have the following theorem.

Theorem 3.3. The queries Query(T (w), x, y), Query(w, x, y) on T can be answered in
O(log3 n) worst case time using a data structure D of size O(m log n), which can be built
in O(m log n) time.

Note: Procedure Reroot can also use a simpler version of D which requires a smaller
query time. However, our generic algorithm (described in Section 3.7) would require these
additional features of D as follows.

1. For Procedure Reroot, the binary search tree E(u) stored at each node u of TB can be
replaced by an array storing the sorted list of edges, making it simpler to implement.
However, our generic algorithm also requires deletion of edges from D. An edge can
be deleted from D by deleting the edge from the binary search trees stored at its
endpoints and their ancestors in TB. Since a deletion in a binary search tree takes
O(log n) time, an edge can be deleted from D in O(log2 n) time.

2. Procedure Reroot only performs the second type of query, i.e., Query(T (w), x, y).
Thus, it would essentially be querying only the part of path(x, y) comprising of the
ancestors of w in path(x, y). This is thus equivalent toQuery(T (w), LCA(x,w), LCA(y, w))
(see Figure 3.5), which will answer the required query as the only edges from T (w)
in this interval are incident on path(x, y). In such a case, heavy-light decomposition
and hence division of path(x, y) to O(log n) subpaths would not be required. Hence,
on each node in u ∈ TB, the query is performed for a single path, requiring total
O(log2 n) time. However, our generic algorithm also uses the first type of query, i.e.,
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Query(w, x, y), where w can be an ancestor of x and y. In such a case, we need to
perform the query only on contiguous intervals of L as the interval between x and
y in L would have several other edges from w that are not incident on path(x, y).
This necessitates the use of heavy-light decomposition and hence each query requires
O(log3 n) time.

3.5 Handling multiple updates - Overview

DFS tree can be computed in Õ(n) time after a single update in the graph, by reducing it
to Procedure Reroot. However, the same procedure cannot be directly applied to handle
a sequence of updates because of the following reason. The efficiency of Procedure Reroot
crucially depends on the data structure D which is built using the DFS tree T of the
original graph. Thus, when the DFS tree is updated, we are required to rebuild D for
the updated tree. Now, rebuilding D is highly inefficient because it requires O(m log n)
time. Thus, in order to handle a sequence of updates, our aim is to use the same D for
handling multiple updates, without having to rebuild it after every update. We now give
an overview of the algorithm that reports the DFS tree after a set U of updates.

In case of a single update, all the edges reported by D are added to the final DFS tree
T ∗. However, while handling multiple updates, we use D to build reduced adjacency lists
for vertices of the graph, such that the DFS traversal of the graph using these sparser
lists gives the DFS tree of the updated graph. Now, the data structure D finds the
lowest/highest edge from a subtree of T to an ancestor-descendant path of T . Thus, in
order to employ D to report DFS tree of G+U , we need to ensure that the queried subtrees
and paths do not contain any failed edges or vertices from U . Hence, for any set U of
updates, we compute a partitioning of T into a disjoint collection of ancestor-descendant
paths and subtrees such that none of these subtrees and paths contain any failed edge
or vertex. An important property of this partitioning is that there are no edges from G
lying between any two subtrees in this partitioning. We refer to this partitioning as a
disjoint tree partitioning. Note that this partitioning depends only upon the vertex and
edge failures present in the set U .

Recall that during the DFS traversal we need to find the lowest edge from each com-
ponent C of the unvisited graph. It turns out that any component C can be represented
as a union of subtrees and ancestor-descendant paths of the original DFS tree T . The
components property can now be employed to compute the reduced adjacency lists of the
vertices of the graph as follows. We just find the lowest edge from each of the subtrees and
the ancestor-descendant paths to T ∗ by querying the data structure D. Let this edge be
(x, y) where x ∈ T ∗ and y ∈ C. We can just add y to the reduced adjacency list L(x) of
x. Since the components property ensures the remaining edges to T ∗ can be ignored, the
DFS traversal would thus consider all possible candidates for the lowest edge from every
component C to T ∗. Let the initial disjoint tree partitioning consist of a set of ancestor-
descendant paths P and a set of subtrees T . The algorithm for computing a DFS tree of
G+ U can be summarized as follows:

Perform the static DFS traversal on the graph with the elements of P ∪ T as the
super vertices. Visiting a super vertex v∗ by the algorithm involves extracting an ancestor-
descendant path p0 from v∗ and attaching it to the partially grown DFS tree T ∗. The
remaining part of v∗ is added back to P ∪T as new super vertices. Thereafter, the reduced
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adjacency lists of the vertices on path p0 are computed using the data structure D. The
algorithm then continues to find the next super vertex using the reduced adjacency lists
and so on.

3.6 Disjoint Tree Partitioning

We formally define disjoint tree partitioning as follows.

Definition 3.1. Given a DFS tree T of an undirected graph G and a set U of failed
vertices and edges, let A be a vertex set in G + U . The disjoint tree partitioning defined
by A is a partition of the subgraph of T induced by A into

1. A set of paths P such that (i) each path in P is an ancestor-descendant path in T
and does not contain any deleted edge or vertex, and (ii) |P| ≤ |U |.

2. A set of trees T such that each tree τ ∈ T is a subtree of T which does not contain
any deleted edge or vertex.

Note that for any τ1, τ2 ∈ T , there is no edge between τ1 and τ2 because T is a DFS tree.

The disjoint tree partitioning for set A = V \ {r} can be computed as follows. Let Vf
and Ef respectively denote the set of failed vertices and edges associated with the updates
U . We initialize P = ∅ and T = {T (w) | w is a child of r}. We refine the partitioning by
processing each vertex v ∈ Vf as follows (see Figure 3.6 (i)).

• If v is present in some T ′ ∈ T , we add the path from par(v) to the root of T ′ to P.
We remove T ′ from T and add all the subtrees hanging from this path to T .

• If v is present in some path p ∈ P, we split p at v into two paths. We remove p from
P and add these two paths to P.

Edge deletions are handled as follows. We first remove edges from Ef that don’t appear
in T . Processing of the remaining edges from Ef is quite similar to the processing of Vf as
described above. For each edge e ∈ Ef , just visualize deleting an imaginary vertex lying
at mid-point of the edge e (see Figure 3.6 (ii)). It takes O(n) time to process any v ∈ Vf
and any e ∈ Ef .

Note that each update can add at most one path to P. So the size of P is bounded by
|U |. The fact that T is a DFS tree of G ensures that no two subtrees in T will have an
edge between them. So P ∪ T satisfies all the conditions stated in Definition 3.1.

Lemma 3.6.1. Given an undirected graph G with a DFS tree T and a set U of failing
vertices and edges, we can find a disjoint tree partition of set V \ {r} in O(n|U |) time.

3.7 Fault tolerant DFS Tree

We first present a fault tolerant algorithm for a DFS tree. Let U be any given set of failed
vertices or edges in G. In order to compute the DFS tree T ∗ for G + U , our algorithm
first constructs a disjoint tree partition (T ,P) for V \{r} defined by the updates U (see
Lemma 3.6.1). Thereafter, it can be visualized as the static DFS traversal on the graph
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Figure 3.6: Disjoint tree partitioning for V \ {r}: (i) Initializing T = {T (a), T (h)} and P = ∅,
(ii) Disjoint tree partition obtained after deleting the vertex g. (iii) Final disjoint tree partition
obtained after deleting the edges (c, d) and (m,n).

whose (super) vertices are the elements of P ∪ T . Note that our notion of super vertices
is for the sake of understanding only.

Consider the stack-based implementation of the static algorithm for computing a DFS
tree rooted at a vertex r in graph G (refer to Figure 3.7(i)). Our algorithm for computing
DFS tree for G + U (refer to Figure 3.7(ii)) is quite similar to the static algorithm. The
only points of difference are the following.

• In the static DFS algorithm whenever a vertex is visited, it is attached to the DFS
tree and pushed into the stack S. In our algorithm when a vertex u in some super
vertex vs ∈ P∪T is visited, a path starting from u is extracted from vs and attached
to the DFS tree, and this entire path is pushed into the stack S.

• Instead of scanning the entire adjacency list N(w) of a vertex w, the reduced adja-
cency list L(w) is scanned.

When a path is extracted from a super vertex vs, the remaining unvisited part of vs
is added back to T ∪ P. However, we need to ensure that the properties of disjoint tree
partitioning are satisfied in the updated T ∪ P. This is achieved using Procedure DFS-
in-Path and Procedure DFS-in-Tree, which also build the reduced adjacency list for the
vertices on the path. The construction of a sparse reduced adjacency list is inspired by
the components property which can be adapted in the context of our algorithm as follows.

Lemma 3.7.1 (Adapted components property). When a path p is attached to the partially
constructed DFS tree T ∗ during the algorithm, for every edge (x, y), where x ∈ p and y
belongs to the unvisited graph the following condition holds. Either y is added to L(x) or
y′ is added to L(x′) for some edge (x′, y′) where x′ is a descendant (not necessarily proper)
of x in p and y′ is connected to y in the unvisited graph.

We now describe how the properties of disjoint tree partitioning and hence the adapted
components property are maintained by our algorithm when a vertex v ∈ vs is visited by
the traversal.
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Procedure Static-DFS(G, r): Static algo-
rithm to compute a DFS tree of G rooted at
r.

1 Stack S ← ∅;
2 Push(r);
3 status(r)← visited;
4 while S 6= empty do
5 w ← Top(S);
6 if N(w) = ∅ then Pop(w);
7 else
8 u← First vertex in N(w);
9 Remove u from N(w);

10 if status(u) = unvisited then

11 par(u)← w;
12 status(u)← visited;
13 Push(u);

14 end

15 end

16 end

(i)

Procedure Dynamic-DFS(G,U, r): Algorithm
for updating the DFS tree T rooted at r for the
graph G+ U .

1 Stack S ← ∅; (T ,P)← Partition(T,U);
2 Push(r);
3 status(r)← visited; L(r)← N(r);
4 while S 6= empty do
5 w ← Top(S); u0 ← w;
6 if L(w) = ∅ then Pop(w);
7 else
8 u← First vertex in L(w);
9 Remove u from L(w);

10 if status(u) = unvisited then
11 if info(u) = tree then
12 {u1, ..., ut} ← DFS-in-Tree(u);
13 else if info(u) = path then
14 {u1, ..., ut} ←DFS-in-Path(u);
15 end
16 for i = 1 to t do
17 par(ui)← ui−1;
18 status(ui)← visited;
19 Push(ui);

20 end

21 end

22 end

23 end

(ii)
1

Figure 3.7: The static (and dynamic) algorithm for computing (updating) a DFS tree. The key
differences are shown in blue.

1. Let vs = path(x, y) ∈ P. Exploiting the flexibility of DFS, we traverse from v to the
farther end of path(x, y). Now, path(x, y) is removed from P and the untraversed
part of path(x, y) (with length at most half of |path(x, y)|) is added back to P.
We refer to this as path halving. This technique was also used by Aggarwal and
Anderson [AA88] in their parallel algorithm for computing DFS tree in undirected
graphs. Notice that |P| remains unchanged or decreases by 1 after this step.

2. Let vs = τ ∈ T . Exploiting the flexibility of a DFS traversal, we traverse the path
from v to the root of τ , say x, and add it to T ∗. Thereafter, τ is removed from T
and all the subtrees hanging from this path are added to T . Observe that every
newly added subtree is also a subtree of the original DFS tree T . So the properties
of disjoint tree partitioning are satisfied after this step as well.

Let path(v, x) be the path extracted from vs. For each vertex w in this newly added
path, we compute L(w) ensuring the adapted components property as follows.

(i) For each path p ∈ P, among potentially many edges incident on w from p, we just
add any one edge.

(ii) For each tree τ ′ ∈ T , we add at most one edge to L as follows. Among all edges
incident on τ ′ from path(v, x), if (w, z) is the edge such that w is nearest to x on
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Figure 3.8: Visiting a super vertex from T ∪ P. (i) The algorithm visits T (a) ∈ T using the edge
(r, e) and the path(n, t) ∈ P using the edge (r, q). (ii) Traversal extracts path(e, a) and path(q, n)
and augment it to T ∗. The unvisited segments are added back to T and P.

path(v, x), then we add z to L(w). However, for the case vs ∈ T , we have to consider
only the newly added subtrees in T for this step. This is because the disjoint tree
partitioning ensures the absence of edges between vs and any other tree in T .

Figure 3.8 provides an illustration of how T ∪ P is updated when a super vertex in
T ∪ P is visited.

3.7.1 Implementation of our Algorithm

We now describe our algorithm in full detail. Firstly we delete all the failed edges in
U from the data structure D. Now, the algorithm begins with a disjoint tree partition
(T ,P) which evolves as the algorithm proceeds. The state of any unvisited vertex in this
partition is captured by the following three variables.
-info(u): this variable is set to tree if u belongs to a tree in T , and set to path otherwise
-IsRoot(v): this variable is set to True if v is the root of a tree in T , and False other-
wise.
-PathParam(v): if v belongs to some path, say path(x, y), in P, then this variable stores
the pair (x, y), and null otherwise.

Procedure Dynamic-DFS : For each vertex v, status(v) is initially set as unvisited,
and L(v) is initialized to ∅. First a disjoint tree partition is computed for the DFS tree
T based on the updates U . The procedure Dynamic-DFS then inserts the root vertex r
into the stack S. While the stack is non-empty, the procedure repeats the following steps.
It reads the top vertex from the stack. Let this vertex be w. If L(w) is empty then w is
popped out from the stack, else let u be the first vertex in L(w). If vertex u is unvisited
till now, then depending upon whether u belongs to some tree in T or some path in P,
Procedure DFS-in-Tree or DFS-in-Path is executed. A path p0 is then returned to Pro-
cedure Dynamic-DFS where for each vertex of p0 parent is assigned and status is marked
visited. The whole of this path is then pushed into stack. The procedure proceeds to the



49

Procedure DFS-in-Tree(u): DFS traversal
enters from node u and exits from v, the root
of the tree containing node u in set T .

1 v ← u;
2 while IsRoot(v) 6= True do
3 v ← par(v)
4 end

5 IsRoot(v)← False;
6 T ← T \T (v);
7 (w1, . . . , wt)← path(u, v);
8 for i = 1 to t do
9 foreach path(x, y) ∈ P do

10 if Query(wi, x, y) 6= ∅ then
11 (wi, z)← Query(wi, x, y);
12 L(wi)← L(wi) ∪ {z};
13 end

14 end

15 foreach child w of wi except wi−1 do
16 (y, z)← Query(T (w), v, u);

/* where y ∈ path(u, v) */

17 L(y)← L(y) ∪ {z};
18 T ← T ∪ T (w);
19 IsRoot(w)← True;

20 end

21 end
22 Return path(u, v);

Procedure DFS-in-Path(u): DFS traversal enters
from node u and exits from v, the farther end of
path containing node u in set P.
1 (v, d)← PathParam(u);
2 if distT (u, d) > distT (u, v) then Swap(v, d);
3 c← Neighbor of u on path(v, d) nearer to d;
4 P ← (P\path(v, d)) ∪ path(c, d);
5 for c′ ∈ path(c, d) do
6 PathParam(c′)← (c, d);
7 end

8 (w1, . . . , wt)← path(u, v);
9 for i = 1 to t do

10 foreach path(x, y) ∈ P do
11 if Query(wi, x, y) 6= ∅ then
12 (wi, z)← Query(wi, x, y);
13 L(wi)← L(wi) ∪ {z};
14 end

15 end

16 end

17 foreach T (w) ∈ T do
18 if Query(T (w), v, u) 6= ∅ then
19 (y, z)← Query(T (w), v, u);

/* where y ∈ path(u, v) */

20 L(y)← L(y) ∪ {z};
21 end

22 end
23 Return path(u, v);

1

Figure 3.9: The pseudocode of Procedures DFS-in-Tree and Procedures DFS-in-Path.

next iteration of While loop with the updated stack.

Procedure DFS-in-Tree : Let vertex u be present in tree, say T (v), in T (the vertex
v can be found easily by scanning the ancestors of u and checking their value of IsRoot).
The DFS traversal enters the tree from u and leaves from the vertex v. Let path(u, v) =
〈w1 = u,w2 . . . , wt = v〉. The path(u, v) is pushed into stack and attached to the partially
constructed DFS tree T ∗. We now update the partition (P, T ) and also update the reduced
adjacency list for each wi present on path(u, v) as follows.

1. For each vertex wi and every path path(x, y) ∈ P, we perform Query(wi, x, y) on
the data structure D that returns an edge (wi, z) such that z ∈ path(x, y). We add
z to L(wi).

2. Recall that since subtrees in T do not have any cross edge between them, there-
fore, there cannot be any edge incident on path(u, v) from trees which are already
present in T . An edge can be incident only from the subtrees which were hanging
from path(u, v). T (v) is removed from T and all the subtrees of T (v) hanging from
path(u, v) are inserted into T . For each such subtree, say τ , inserted into T , we
perform Query(τ, v, u) on the data structure D that returns an edge, say (y, z), such
that z ∈ τ and y is nearest to v on path(u, v). We insert z into L(y).

Procedure DFS-in-Path : Let vertex u visited by the DFS traversal lies on a path(v, y) ∈
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P. Assume distT (u, v) > distT (u, y). The DFS traversal travels from u to v (the farther
end of the path). The path path(v, y) in set P is replaced by its subpath that remains
unvisited. The reduced adjacency list of each w ∈ path(u, v) is updated in a similar way
as in the procedure DFS-in-Tree except that in step 2, we perform Query(τ, u, v) for each
τ ∈ T . Note that while performing step 1, the vertex wi can be an ancestor of the vertices
of path(x, y). This is because the vertices of a path in P can be ancestors of the vertices
of another path in P. This was not true for Procedure DFS-in-Trees because vertices of
a subtree in T cannot be ancestors of vertices of any path in P. Thus, our data structure
D needs to support queries where wi is an ancestor of the queried path (refer to the note
at the end of Section 3.4).

The reader may refer to Figure 3.9 for pseudocode of Procedures DFS-in-Tree and DFS-
in-Path. This completes the description of the fault tolerant algorithm for computing a
DFS tree. This algorithm maintains the adapted components property at each stage by
construction given that the properties of disjoint tree partitioning are satisfied.

3.7.2 Correctness

It can be seen that the following two invariants hold for the while loop in the Procedure
Static-DFS described in Figure 3.7 (i). It is easy to see that these invariants imply the
correctness of the algorithm, i.e., the generated tree is a rooted spanning tree where every
non-tree edge is a back edge.

I1: The sequence of vertices in the stack from bottom to top constitutes an ancestor-
descendant path from r in the DFS tree computed.

I2: For each vertex v that is popped out, all vertices in the set N(v) have already been
visited.

These two invariants I1 and I2 also hold for Procedure Dynamic-DFS described in
Figure 3.7 (ii) as follows. Invariant I1 holds by construction as described in our algorithm.
Following lemma proves that invariant I2 is maintained by our algorithm since it follows
the adapted components property by construction.

Lemma 3.7.2. If the adapted components property is maintained by the Procedure Dynamic-
DFS, then invariant I2 will hold true at each stage of the algorithm.

Proof. We give a proof by contradiction as follows. Assume that x is the first vertex that
is popped out of the stack before some vertex y ∈ N(x) is visited. Consider the time
when a path p containing x was pushed in the stack. Clearly y /∈ L(x), hence using the
adapted components property we know that some y′ ∈ L(x′) is connected to y in the
unvisited graph where x′ is a descendant (not necessarily proper) of x in p. Let p∗ be a
path between y′ and y in the unvisited graph.

Now, consider the time when x is popped out of the stack. Clearly all its descendants
including x′ have been popped out, so using invariant I2 for x′, y′ has been visited by
the traversal. Thus, p∗ can be divided into two non-empty sets A and B denoting visited
and unvisited vertices of p∗ respectively. Here y′ ∈ A and y ∈ B, thus clearly for the last
vertex of p∗ that is present in A, the invariant I2 is not satisfied. This contradicts our
assumption that x is the first vertex that is popped out of the stack for which I2 is not
satisfied. Thus, maintenance of the adapted components property ensures the invariant
I2 in our algorithm.
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Hence, our algorithm indeed computes a valid DFS tree for G+ U .

3.7.3 Time complexity analysis

As described earlier the disjoint tree partitioning and the components property play a
key role in the efficiency of our algorithm. They allow us to limit the size of the reduced
adjacency lists L, that are built during the algorithm. Our algorithm computes T ∗ by
performing a DFS traversal on the reduced adjacency list L. Thus, the time complexity
of our algorithm is O(n+ |L|) excluding the time required to compute L.

We first establish a bound on the size of L. In each step our algorithm extracts a path
from vs ∈ P ∪ T and attaches it to T ∗. Let Pt and Pp denote the set of such paths that
originally belonged to some tree in T and some path in P, respectively. For every path
p0 ∈ Pt ∪ Pp our algorithm performs the following queries on D.

(i) For each vertex w in p0, we query each path in P for an edge incident on the vertex
w. Thus, the total number of edges added to L by these queries is O(n|P|).

(ii) If p0 belongs to Pp, then we query for an edge from each τ ∈ T to p0. It follows
from the path halving technique that each path in P reduces to at most half of its
length whenever some path is extracted from it and attached to T ∗. Hence, the size
of Pp is bounded by |P| log n.

(iii) If p0 belongs to Pt, then we query for an edge from only those subtrees which were
hanging from p0. Note that these subtrees will now be added to set T . Hence,
the total number of trees queried for this case will be bounded by number of trees
inserted to T . Since each subtree can be added to T only once, these edges are
bounded by O(n) throughout the algorithm.

Thus, the size of L is bounded by O
(
n(1 + |P|) log n

)
. Since each edge added to L

requires querying the data structure D which takes O(log3 n) time, the total time taken
to compute L is O

(
n(1 + |P| log n) log3 n

)
. Thus, we have the following lemma.

Lemma 3.7.3. An undirected graph can be preprocessed to build a data structure of
O(m log n) size such that for any set U of k failed vertices or edges (where k ≤ n),
the DFS tree of G+ U can be reported in O(n(1 + |P| log n) log3 n) time.

From Definition 3.1 we have that |P| is bounded by |U |. Thus, we have the following
theorem.

Theorem 3.4. An undirected graph can be preprocessed to build a data structure of
O(m log n) size such that for any set U of k failed vertices or edges (where k ≤ n),
the DFS tree of G+ U can be reported in O(nk log4 n) time.

It can be observed that Theorem 3.4 directly implies a data structure for fault tolerant
DFS tree.

3.7.4 Extending the algorithm to handle insertions

In order to update the DFS tree, our focus has been to restrict the number of edges that
are processed. For the case when the updates are deletions only, we have been able to
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restrict this number to O(nk log n), for a given set of k updates (failure of vertices or
edges). We now describe the procedure to handle vertex and edge insertions. Let VI be
the set of vertices inserted, and EI be the set of edges inserted. (including the edges
incident to the vertices in VI). If there are k vertex insertions, the size of EI is bounded
by nk. So even if we add all the edges in EI to the reduced adjacency lists, the size of
L would still be bounded by O(nk log n). Hence, we perform the following two additional
steps before starting the DFS traversal.

• Initialize L(v) to store the edges in EI instead of ∅. That is, L(v)← {y | (y, v) ∈ EI}

• Each newly inserted vertex is treated as a singleton tree and added to T . That is,
T ← T ∪ {x|x ∈ VI}.

In order to establish that our algorithm, after incorporating the insertions, correctly
computes a DFS tree of G + U , we need to ensure that all the edges essential for DFS
traversal as described in the adapted components property are added to L. All the essential
edges from G are added to L during the algorithm itself. In case an essential edge belongs
to EI , the edge has already been added to L during its initialization. Note that the
time taken by our algorithm remains unchanged since the size of L remains bounded by
O(nk log n). This completes the proof of our main result stated as follows.

Theorem 3.5. An undirected graph can be preprocessed to build a data structure of
O(m log n) size such that for any set U of k ≤ n updates, a DFS tree of G + U can
be reported in O(nk log4 n) time.

Let us consider the case when U consists of insertions only. In this case P will be an
empty set. As discussed above, we initialize the reduced adjacency lists using EI whose
size is equal to |U |. Additionally, since the vertices in VI would be added to the set of
trees, |VI | would be added to n. Hence, Lemma 3.7.3 implies the following theorem.

Theorem 3.6. An undirected graph can be preprocessed to build a data structure of
O(m log n) size such that for any set U of k vertex insertions and m′ edge insertions,
a DFS tree of G+ U can be reported in O(m′ + (n+ k) log3 n) time.

Note: In Theorem 3.6, the size of input is k + m′. Also, even a single insertion may
change Ω(n) edges of the DFS tree. Hence our algorithm is optimal up to Õ(1) factors for
processing edge or vertex insertions if the DFS tree has to be maintained explicitly.

3.8 Fully dynamic DFS

We now describe the overlapped periodic rebuilding technique to convert our algorithm
for computing a DFS tree after k updates to fully dynamic and incremental algorithms for
maintaining a DFS tree. Similar technique was used by Thorup [Tho05] for maintaining
fully dynamic all pairs shortest paths.

In the fully dynamic model, we need to report the DFS tree after every update in the
graph. Given the data structure D built using the DFS tree of the graph G, we are able
to report the DFS tree of G + U after |U | = k updates in Õ(nk) time. This becomes
inefficient if k becomes large. Rebuilding D after every update is also inefficient as it takes
Õ(m) time to build D. Thus, it is better to rebuild D after every |U ′| = c updates for a
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carefully chosen c. Let D′ be the data structure built using the DFS tree of the updated
graph G+ U ′ with |U ′| = c. D′ can thus be used to process the next c updates efficiently
(see Figure 3.10 (a)). The cost of building D′ can thus be amortized over these c updates.

To achieve an efficient worst case update time, we divide the building of D′ over the
first c updates. This D′ is then used by our algorithm in the next c updates, during which
a new D′′ is built in a similar manner and so on (see Figure 3.10 (b)). The following lemma
describes how this technique can be used in general for any dynamic graph problem. For
notational convenience we denote any function f(m,n) as f .

Lemma 3.8.1. Let D be a data structure that can be used to report the solution of a graph
problem after a set of U updates on an input graph G. If D can be build in O(f) time and
the solution for graph G+ U can be reported in O(h+ |U | × g) time, then D can be used
to report the solution after every update in worst case O(

√
fg+h) update time, given that√

f/g ≤ n.

(a) (b)
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Figure 3.10: (a) Fully dynamic algorithm with amortized update time. (b) De-amortization of the
algorithm.

Proof. We first present an algorithm that achieves amortized O(
√
fg+h) update time. It

is based on the simple idea of periodic rebuilding. Given the input graph G0 we preprocess
it to compute the data structure D0 over it. Now, let u1, ..., uc (c ≤ n) be the sequence
of first c updates on G0. To report the solution after ith update we use D0 to compute
the solution for G0 + {u1, ..., ui}. This takes O(h + (i × g)) time. So the total time for
preprocessing and handling the first c updates is O(f +

∑c
i=1 h+ (i× g)). Therefore, the

average time for the first c updates is O(f/c+ c× g + h). Minimizing this quantity over
c gives the optimal value c0 =

√
f/g which is bounded by n. So, after every c0 updates

we rebuild our data structure and use it for the next c0 updates (see Figure 3.10(a)).
Substituting the value of c0 gives the amortized time complexity as O(

√
fg + h ).

The above algorithm can be de-amortized as follows. Let G1, G2, G3, . . . be the se-
quence of graphs obtained after c0, 2c0, 3c0, .. updates. We use the data structure D0 built
during preprocessing to handle the first 2c0 updates. Also, after the first c0 updates we
start building the data structure D1 over G1. This D1 is built in c0 steps, thus the extra
time spent per update is f/c0 = O(

√
fg) only. We use D1 to handle the next c0 updates

on graph G2, and also in parallel compute the data structure D2 over the graph G2. (See
Figure 3.10(b)). Since the time for building each data structure is now divided in c0 steps,
we have that the worst case update time as O(

√
fg + h ).
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The above lemma combined with Theorems 3.5 and 3.6 directly implies the following
results for the fully dynamic DFS tree problem and the incremental DFS tree problem,
respectively.

(For the following theorem we use Theorem 3.5, implying f = m log n, g = n log4 n
and h = 0.)

Theorem 3.7. There exists a fully dynamic algorithm for maintaining a DFS tree in
an undirected graph that uses O(m log n) preprocessing time and can report a DFS tree
after each update in the worst case O(

√
mn log2.5 n) time. An update in the graph can be

insertion / deletion of an edge as well as a vertex.

(For the following theorem we use Theorem 3.6, implying f = m log n, g = log3 n and
h = n log3 n.)

Theorem 3.8. There exists an incremental algorithm for maintaining a DFS tree in an
undirected graph that uses O(m log n) preprocessing time and can report a DFS tree after
each edge insertion in the worst case O(n log3 n) time.

3.9 Applications

Our fully dynamic algorithm for maintaining a DFS tree can be used to solve various
dynamic graph problems such as dynamic subgraph connectivity, biconnectivity and 2-
edge connectivity . Note that these problems are solved trivially using a DFS tree in the
static setting. Let us now describe the importance of our result in the light of the existing
results for these problems.

Existing Results

The dynamic subgraph connectivity problem is defined as follows. Given an undirected
graph, the status of any vertex can be switched between active and inactive in an update.
For any online sequence of updates interspersed with queries, the goal is to efficiently
answer each connectivity queries on the subgraph induced by the active vertices. This
problem can be solved by using dynamic connectivity data structures [EGIN97, Fre85,
HdLT01, KKM13] that answer connectivity queries under an online sequence of edge
updates. This is because switching the state of a vertex is equivalent to O(n) edge updates.
Chan [Cha06] introduced this problem and showed that it can be solved more efficiently.
He gave an algorithm using FMM (fast matrix multiplication) that achieves O(m0.94)
amortized update time and Õ(m1/3) query time. Later Chan et al. [CPR08] presented a
new algorithm that improves the amortized update time to Õ(m2/3). They also mentioned
the following among the open problems.

1. Is it possible to achieve constant query time with worst case sublinear (o(m)) update
time ?

2. Can non trivial updates be obtained for richer queries such as counting the number
of connected components ?

Duan [Dua10] partially answered the first question affirmatively but at the expense
of a much higher update time and non-constant query time. He presented an algorithm



55

References Update Time Query Time

Frederickson [Fre85] (1985),
Eppstein et al. [EGIN97] (1997)

O(n
√
n) O(1)

Holm et al. [HdLT01] (2001) Õ(n) amortized Õ(1)

Chan [Cha06] (2006) Õ(m0.94) amortized Õ(m1/3)

Chan et al. [CPR08] (2008) Õ(m2/3) amortized Õ(m1/3)

Duan [Dua10] (2010) Õ(m4/5) Õ(m1/5)

Kapron et al. [KKM13] (2013) Õ(n)
Õ(1)
(Monte Carlo)

New Õ(
√
mn) O(1)

Table 3.1: Current-state-of-the-art of the algorithms for the dynamic subgraph connectivity.

with O(m4/5) worst case update time and O(m1/5) query time, improving the worst case
bounds for the problem. Kapron et al. [KKM13] presented a randomized algorithm for
fully dynamic connectivity which takes Õ(1) time per update and answers the query cor-
rectly with high probability in Õ(1) time, giving a Monte Carlo algorithm for subgraph
connectivity with worst case Õ(n) update time. Thus, their result answered the first ques-
tion in a randomized setting. However, in the deterministic setting both these questions
were still open. Our result answers both these questions affirmatively for the deterministic
setting as well. Our fully dynamic DFS algorithm directly provides an Õ(

√
mn) update

time and O(1) query time algorithm for the dynamic subgraph connectivity problem. Our
algorithm maintains the number of connected components simply as a byproduct. In fact,
our fully dynamic DFS algorithm solves a generalization of dynamic subgraph connectiv-
ity - in addition to just switching the status of vertices, it allows insertion of new vertices
as well. Hence the existing results offer different trade-offs between the update time and
the query time, and differ on the types (amortized or worst case) of update time and the
types (deterministic or randomized) of query time. Our algorithm, in particular, improves
the deterministic worst case bounds for the problem (see Figure 3.1). Further, unlike all
the previous algorithms for dynamic subgraph connectivity, which use heavy machinery of
existing dynamic algorithms, our algorithm is arguably much simpler and self contained.

Exploiting the rich structure of DFS trees, we also obtain Õ(
√
mn) update time algo-

rithms for dynamic biconnectivity and dynamic 2-edge connectivity under vertex updates
in a seamless manner. These problems have mainly been studied in the dynamic setting
under edges updates. Some of these results also allow insertion and deletion of isolated
vertices. Our result, on the other hand does not impose any such restriction on insertion
or deletion of vertices. Figure 3.2 illustrates our results and the existing results in the right
perspective. We now describe how our algorithm can be used to solve these problems.

3.9.1 Algorithm

The solution of dynamic subgraph connectivity follows seamlessly from our fully dynamic
algorithm as follows. As mentioned in Appendix A, we maintain a DFS tree rooted at
a dummy vertex r, such that the subtrees hanging from its children corresponds to the
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References Update Time
Query
Time

Frederickson [Fre85] (1985),
Eppstein et al. [EGIN97] (1997)† O(n

√
n) O(1)

Henzinger [Hen00] (2000) ∗ Õ(n
√
n) O(1)

Holm et al. [HdLT01] (2001) ∗† Õ(n) amortized Õ(1)

New ∗† Õ(
√
mn) O(1)

Table 3.2: Current-state-of-the-art of the algorithms for the dynamic biconnectivity (∗) and dy-
namic 2-edge connectivity (†) under vertex updates.

connected components of the graph. Hence, the connectivity query for any two vertices
can be answered by comparing their ancestors at depth two (i.e. children of r). This
information can be stored for each vertex and updated whenever the DFS tree is updated.
Thus, we have a data structure for subgraph connectivity with worst case Õ(

√
mn) update

time and O(1) query time. Our fully dynamic DFS algorithm can be extended to solve
fully dynamic biconnectivity and 2-edge connectivity under vertex updates as follows.

A set S of vertices in a graph is called a biconnected component if it is a maximal set of
vertices such that on failure of any vertex w in S, the vertices of S\{w} remains connected.
Similarly, a set S is said to be 2-edge connected component if it is a maximal set of vertices
such that the failure of any edge with both endpoints in S does not disconnect any two
vertices in S. The biconnectivity and 2-edge connectivity queries can be answered easily
by finding articulation points and bridges of the graph. It can be shown [CLRS09] that two
vertices belong to same biconnected component if and only if the path connecting them
in a DFS tree of the graph does not pass through any articulation point. Similarly, two
vertices belong to same 2-edge connected component if and only if the path connecting
them in a DFS tree of the graph does not have a bridge. An articulation point and a
bridge of a graph can be defined as follows:

Definition 3.2. Given a graph G = (V,E), a vertex v ∈ V is called an articulation point
of G if there exist a pair of vertices x, y ∈ V such that every path between x and y in G
passes through v.

Definition 3.3. Given a graph G = (V,E), an edge e ∈ E is called a bridge of G if there
exist a pair of vertices x, y ∈ V such that every path between x and y in G passes through
e.

The articulation points and bridges of a graph can be easily computed by using DFS
traversal of the graph. Given a DFS tree T of an undirected graph G, we can index the
vertices in the order they are visited by the DFS traversal. This index is called the DFN
number of the vertex. The high number of a vertex v is defined as the lowest DFN number
vertex from which there is an edge incident to T (v). Now, any non-root vertex v will be
an articulation point of the graph if high number of at least one of its children is equal
to DFN(v). The root r of the DFS tree T will be an articulation point if it has more
than one child. An edge (x, y) of the DFS tree, where x = par(y), will be a bridge if the
high number of y is DFN(x) and the high number of each child of y (if any) is equal to



57

DFN(y). Thus, given the high number of each vertex in the DFS tree, the articulation
points and bridges can be determined in O(n) time.

We can augment our fully dynamic DFS algorithm with an additional procedure to
compute high number of each vertex using the same time bounds. For this we show that
given any set of k updates to graph G, while computing the new tree T ∗ we also compute
the high number of each vertex in O(nk log4 n) time. For each vertex x, let a(x) denote
the highest ancestor of x in T ∗ such that (x, a(x)) is an edge in G + U . Note that if
(x, a(x)) is a newly added edge, then it can be easily computed by scanning all the new
edges added to the graph. This is due to fact that the total number of new edges added
to G is bounded by nk. So we restrict ourselves to the case when (x, a(x)) was originally
present in the graph G. Recall that our algorithm computes T ∗ by attaching paths to
the partially grown tree. Let Pt and Pp be the set of paths attached to T ∗ (during its
construction) that originally belonged to T and P respectively. Further, path halving
ensures that the size of Pp is bounded by k log n. For each path p0 ∈ Pt ∪ Pp, let H(p0)
denote the vertex in p0 that is closest to r in T ∗.

We now present the procedure for constructing a subset A(x) of neighbors of x while
computing T ∗ in O(nk log4 n) time, such that the following condition holds.

• For a vertex x, if a(x) /∈ A(x), then there is some descendant y of x in T ∗ such that
a(x) ∈ A(y).

It is easy to see that if we get such an A(x) for each x, then high number of each
vertex can be computed easily by processing the vertices of T ∗ in bottom-up manner.
Now, depending upon whether paths containing x and a(x) belong to set Pp or Pt, we can
have different cases described as follows.
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Figure 3.11: (i) Before the beginning of algorithm vertex x belongs to tree T0 ∈ T , z is the highest
ancestor of x in T0 such that (x, z) is an edge. (ii) The partitioning changes as the algorithm
proceeds, T1(∈ T ) is the tree containing vertex z just before it is attached to T ∗. (iii) A path
containing vertex z (i.e. pz) is extracted from T1 and attached to T ∗. If a(x) belongs to T0, then
it is the highest neighbor of x in pz.

1. Vertex a(x) lies on a path in Pp
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For every vertex v ∈ V and each path p0 ∈ Pp, we query D to compute the edge
(u, v) where u is closest to H(p0) on path p0, and add u to A(v). Note that if a(x)
lies on p0, for v = x the computed vertex u will be same as a(x).

2. Vertex x lies on a path in Pp

For each u ∈ T ∗ and p0 ∈ Pp, we query D for an edge (u, y) such that the endpoint
y is farthest from H(p0) on path p0. We add u to A(y). Now, consider a vertex x
on p0 such that a(x) = u. If x is equal to y, then we have added a(x) (i.e. u) to
A(x). If x is not equal to y, then we have added a(x) (i.e. u) to A(y) where y is
descendant of x in T ∗.

3. Vertex x and a(x) lies on same path in Pt

For every vertex v ∈ p0 for a path p0 ∈ Pt, we query D to compute the edge (u, v)
where u is closest to H(p0) on path p0, and add u to A(v). Note that for x = v, if
a(x) also lies on p0, then u will be same as a(x).

4. Vertex x and a(x) lies on different paths in Pt

Let x belong to T0 in the initial disjoint tree partitioning T ∪P. We claim that a(x)
would also belong to same tree T0. This is because disjoint tree partitioning ensures
the absence of edges between two subtrees in T . Let z be the highest ancestor of
x in T0 such that (x, z) is an edge in G + U . Let pz be the path in Pt containing
vertex z.

We now prove that a(x) belongs to pz. Recall that as the algorithm proceeds, our
partitioning P ∪ T evolves with time. Let T1 be the tree in T containing vertex z
just before pz is attached to T ∗. Then T1 is either same as T0, or a subtree of T0 (see
Figure 3.11 (i)). Also, a(x) must lie in tree T1, since it cannot be an ancestor of z in
T0. Now, let T2 be the tree containing x which is obtained on removal of pz from T1.
Since z is an ancestor of x in T0, the vertices in T2 will eventually hang from some
descendant of z (not necessarily proper) in T ∗. For a(x) to be the highest neighbor
of x in T ∗, it should be an ancestor of z in T ∗, which is only possible if a(x) ∈ pz.
Therefore, for each vertex x belonging to a tree T0 in T , we calculate the highest
ancestor z of x in T0 such that (x, z) is an edge in G + U . We compute a list l(z)
that consist of all the vertices x whose highest ancestor in T0 is z. Now, when pz is
added to T ∗, we process l(z) as follows. For every v ∈ l(z), we query D for an edge
(u, v) where u is closest to H(pz) on path pz, and add u to A(v). Note that if a(x)
also lies in T0, then u must be same as a(x) (see Figure 3.11 (iii)).

Now, in the first two steps the total time taken is dominated by the number of queries
between each path in Pp and the vertices in T , i.e., |Pp| × n × log3 n = O(nk log4 n). In
the last two steps the total time taken is dominated by a single query for each vertex in
T , i.e., n× log3 n = O(n log3 n). Thus, we have the following theorem.

Theorem 3.9. Given an undirected graph G(V,E) with |V | = n and |E| = m, we can
maintain a data structure for answering queries of biconnected components and 2 edge
connectivity in a dynamic graph which takes O(

√
mn log2.5 n) update time, O(1) query

time and O(m log n) time for preprocessing.
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3.10 Lower Bounds

We now prove two conditional lower bounds for maintaining a DFS tree under vertex or
edge updates.

3.10.1 Vertex Updates

The lower bound for maintaining a DFS tree under vertex updates is based on Strong
Exponential Time Hypothesis (SETH) as defined below:

Definition 3.4 (SETH). For every ε > 0, there exists a positive integer k, such that SAT
on k−CNF formulas on n variables cannot be solved in Õ(2(1−ε)n) time.

Given an undirected graph G on n vertices and m edges in a dynamic environment
(incremental / decremental or fully dynamic) under vertex updates. The status of any
vertex can be switched between active and inactive in an update. The goal of subgraph
connectedness is to efficiently answer whether the subgraph induced by active vertices is
connected. Abboud and Williams[AW14] proved a conditional lower bound of Ω(n) per up-
date based on SETH for answering dynamic subgraph connectedness queries. They proved
that any algorithm for answering dynamic subgraph connectedness queries using arbitrary
polynomial preprocessing time and O(n1−ε) amortized update time would essentially re-
fute the SETH conjecture. They also proved that any algorithm for maintaining partially
dynamic (incremental/decremental) subgraph connectedness using arbitrary polynomial
preprocessing time and O(n1−ε) worst case update time would essentially refute the SETH
conjecture.

We present a reduction from subgraph connectedness to maintaining DFS tree under
vertex updates requiring the algorithm to report whether the number of children of the
root in any DFS tree of the subgraph is greater than 1. Thus, we establish the following:

Theorem 3.10. Given an undirected graph G with n vertices and m edges undergoing ver-
tex updates, an algorithm for maintaining DFS tree that can report the number of children
of the root in the DFS tree with preprocessing time p(m,n), update time u(m,n) and query
time q(m,n) would imply an algorithm for subgraph connectedness with preprocessing time
p(m+ n, n), update time u(m+ n, n) and query time q(m+ n, n).

Proof. Given the graph G for which we need to query for subgraph connectedness, we
make a graph G′ as follows. We add all vertices and edges of G to G′. Further, add
another vertex r called as pseudo root and connect it to all other vertices of G′. Thus, G′

has n+1 vertices and m+n edges. Now, in any DFS tree T of G′ rooted at r, the number
of children of r will be equal to the number of components in G. Here subtrees rooted on
each child of s represents a component of G. Any change on G can be performed on G′

and query for subgraph connectedness in G is equivalent to querying if r has more than 1
child in T .

Thus, any algorithm for maintaining fully dynamic DFS under vertex updates with
arbitrary preprocessing time and O(n1−ε) amortized update time would refute SETH.
Also, any algorithm for maintaining partially dynamic DFS under vertex updates with
arbitrary preprocessing time and O(n1−ε) worst case update time would refute SETH.
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3.10.2 Edge Updates

We now present a lower bound for maintaining a DFS tree under edge updates that holds
for any algorithm which maintains tree edges of the DFS tree explicitly. In the following
example we prove that there exists a graph G and a sequence of edge updates U , such
that any DFS tree of the graph would require a conversion of Ω(n) edges from tree edges
to back edges and vice-versa after every pair of updates in U .
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Figure 3.12: Worst Case Example for lower bound on maintaining DFS tree under fully dynamic
edge updates.

Consider the following graph for which a DFS tree rooted at r is to be maintained
under fully dynamic edge updates. There are n/2 vertices u1,...,ul that have edges to
vertices x and y. The remaining n/2 − 3 vertices v1,..., vk are connected in form of a
line as shown in Figure 3.12. At any point of time one of v1, ..., vk (say v1) is connected
to either x or y. The DFS tree for the graph is shown in Figure 3.12 (i). Now, upon
insertion of edge (vi, x) (say i = 2) and deletion of edge (v1, y) the DFS tree will transform
to either Figure 3.12 (ii) or Figure 3.12 (iii). Clearly Ω(n) edges are converted from tree
edges to back edges and vice-versa. This can be repeated alternating between x and y
ensuring that the new DFS tree requires Ω(n) after every two edge updates. Further, we
repeat this for different vi’s ensuring that the new DFS tree is not exactly the same as
some previous DFS tree (thus memorization of the complete tree will not help). Note that
the same procedure can be applied to both the possible trees shown in Figure 2.5(ii) and
Figure 2.5(iii). Hence any algorithm maintaining tree edges explicitly takes Ω(n) time to
handle such a pair of edge updates.

3.11 Discussion

We have presented a fully dynamic algorithm for maintaining a DFS tree that takes worst
case Õ(

√
mn) update time. This is the first fully dynamic algorithm that achieves o(m)

update time. In the fault tolerant setting our algorithm takes Õ(nk) time to report a DFS
tree, where k is the number of vertex or edge failures in the graph. We show the immediate
applications of fully dynamic DFS for solving various problems such as dynamic subgraph
connectivity, biconnectivity and 2-edge connectivity. We also prove the conditional lower
bound of Ω(n) on maintaining DFS tree under vertex/edge updates.
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A natural question is to consider whether the current techniques can be extended to
achieve a Õ(n) update time algorithm for fully dynamic DFS, matching the corresponding
lower bound. However, the main problem in being able to do so, is the difficulty in updating
the data structure D whenever the structure of the DFS tree is changed. Using the same
data structure for handling multiple updates may not give us an improved bound due to
the presence of Õ(nk) edges among the super nodes (elements of disjoint tree partitioning).
Another interesting research direction would be to consider similar techniques for directed
graphs. Here the primary problem seems to be the traversal of the elements of disjoint
tree partitioning, which does not allow path halving or traversing the path to the root in a
subtree. Moreover, a DFS tree in directed graphs restricts only anti-cross edges, allowing
cross edges from right to left in the DFS tree. This leads to the absence of any bound on
the edges among the super nodes, like the Õ(nk) bound in case of undirected graphs.

DFS tree has been extensively used for solving various graph problems in the static
setting. Most of these problems are also solved efficiently in the dynamic environment.
However, their solutions have not used dynamic DFS tree. Furthermore, solutions to most
dynamic graph problems under edge updates requires o(n) update time. However, this is
not true for the vertex update variants of these problems. In the light of Ω(n) lower bound
for updating DFS under both edge and vertex updates, it becomes clear that dynamic
DFS tree would be more applicable in dynamic graph problems under vertex updates.
The applications of our fully dynamic algorithm follows from the fact that it handles
vertex updates which was not the case with the existing algorithms for maintaining DFS
tree in any dynamic setting. This work is thus an attempt to restore the glory of DFS
trees for solving graph problems in the dynamic setting as was the case in the static
setting. We believe that our dynamic algorithm for DFS, on its own or after further
improvements/modifications, would encourage other researchers to use it in solving various
other dynamic graph problems.





Chapter 4

Dynamic DFS in other models of
computation

4.1 Introduction

In Section 3.3 we described a simple algorithm for updating the DFS tree of an undirected
graph after an edge/vertex update in Õ(n) time. However, this algorithm is strictly
sequential. In this chapter, we present another algorithm achieving similar bounds, that
can be easily adopted to more practical models of computation. This algorithm can be
used to develop deterministic parallel algorithms for maintaining fully dynamic DFS and
fault tolerant DFS of an undirected graph. Our fully dynamic DFS algorithm requires Õ(1)
time per update using m processors. However, if the number of processors are limited to
n, our fault tolerant algorithm can report the DFS tree of the graph after any k edge
or vertex updates in Õ(1) time (for constant k). It also provides a fully dynamic DFS
algorithm in semi-streaming model requiring Õ(1) passes per update, and in distributed
CONGEST (n/D) model, requiring Õ(D) rounds per update, where D is the diameter
of the graph. These are the first parallel, semi-streaming and distributed algorithms for
maintaining a DFS tree in the dynamic setting.

Our fully dynamic algorithm and fault tolerant algorithm (for constant k), clearly takes
optimal time (up to poly log n factors) for maintaining a DFS tree. Our fault tolerant
algorithm (for constant k) is also work optimal (up to poly log n factors) since a single
update can lead to Θ(n) changes in the DFS tree. Moreover, our result also establishes
that maintaining a fully dynamic DFS tree for an undirected graph is in NC (which is still
an open problem for DFS tree in the static setting). Our semi-streaming algorithm clearly
takes optimal number of passes (up to poly log n factors) for maintaining a DFS tree.
Our distributed algorithm that works in a restricted CONGEST (B) model, also arguably
requires optimal rounds (up to poly log n factors) because it requires Ω(D) rounds to
propagate the information of the update throughout the graph. Since almost the whole
DFS tree may need to be updated due to a single update in the graph, every algorithm
for maintaining a DFS tree in the distributed setting will require Ω(D) rounds 1. This
essentially improves the state of the art for the classes of graphs with o(n) diameter.

1For an algorithm maintaining the whole DFS tree at each node, our message size is also optimal.
This is because an update of size O(n) (vertex insertion with arbitrary set of edges) has to be propagated
throughout the network in the worst case. In O(D) rounds, it can only be propagated using messages of
size Ω(n/D). (see Section 4.10.2 for details).
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4.2 Overview

We now describe a brief overview of our result. In Section 3.3 we proved that updating
a DFS tree after any update in the graph is equivalent to rerooting disjoint subtrees of
the DFS tree. We also presented an algorithm to reroot a DFS tree T (or its subtree),
originally rooted at r to a new root r′, in Õ(n) time. It starts the traversal from r′

traversing the path connecting r′ to r in T . Now, the subtrees hanging from this path are
essentially the components of the unvisited graph (the subgraph induced by the unvisited
vertices of the graph) due to the absence of cross edges. In the updated DFS tree, every
such subtree, say τ , shall hang from an edge emanating from τ to the path from r′ to r.
Let this edge be (x, y), where x ∈ τ . Thus, we need to recursively reroot τ at the new
root x and hang it from (x, y) in the updated DFS tree. Note that this rerooting can be
independently performed for different subtrees hanging from tree path from r′ to r.

At the core of that result, we used a property of the DFS tree, called components
property, to find the edge (x, y) efficiently, using a data structure (referred as D0 in this
chapter). However, as evident from the discussion above, that rerooting procedure can be
strictly sequential in the worst case. This is because the size of a subtree τ to be rerooted
can be almost equal to that of the original tree T . As a result, O(n) sequential reroots
may be required in the worst case. In this chapter we develop an algorithm that performs
this rerooting efficiently in parallel.

Our new algorithm ensures that rerooting is completed in Õ(1) steps as follows. At
any point of time, we ensure that every component c of the unvisited graph is either of
type C1, having a single subtree of T , or of type C2, having a path pc and a set of subtrees
of T having edges to pc. Note that in Section 3.3 every component of the unvisited graph
is of type C1. We define three types of traversals, namely, path halving, disintegrating
traversal and disconnecting traversal. We prove that using a combination of O(1) such
traversals, for every component c of the unvisited graph, either the length of pc is halved
or the size of largest subtree in c is halved. Moreover, these traversals can be performed
in O(log n) time on |c| processors using the components property and a data structure D
(answering similar queries as D0). However, since our new algorithm ensures that each
vertex is queried by D only Õ(1) times (unlike one in Section 3.3), our new data structure
D is much simpler than D0.

Furthermore, both these algorithms use the non-tree edges of the graph only to answer
queries on data structure D (or D0). The remaining operations (except for queries on
D) required by our algorithm can be performed using only edges of T in O(n) space. As
a result, our algorithm being efficient in parallel setting (unlike the one in Section 3.3),
can also be adapted to the semi-streaming and distributed model as follows. In the semi-
streaming model, the passes over the input graph are used only to answer the queries on
D, where the parallel queries on D made by our algorithm can be answered simultaneously
using a single pass. Our distributed algorithm only needs to store the current DFS tree
at each node and the adjacency list of the corresponding vertex abiding the restriction
of O(n) space at each node. Again, the distributed computation is only used to answer
queries on D.
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4.3 Preliminaries

For our distributed algorithm, we use the synchronous CONGEST (B) model [Pel00]. For
the dynamic setting, Henzinger et al. [HKN13] presented a model that has a preprocessing
stage followed by an alternating sequence of non-overlapping stages for update and recovery
(see Section 4.10.2 for details). We use this model with an additional constraint of space
restriction of O(n) size at each node. In the absence of this restriction, the whole graph
can be stored at each node, where an algorithm can trivially propagate the update to
each node and the updated solution can be computed locally. Also, we allow the deletion
updates to be abrupt, i.e., the deleted link/node becomes unavailable for use instantly
after the update.

We shall now define some queries that are performed by our algorithm on the data
structure D (similar to the queries on D0 in Chapter 3). Let v, w, x, y ∈ V , where
path(x, y) and path(v, w) (if required) are ancestor-descendant paths in T . Also, no vertex
in path(v, w) is a descendant of any vertex in path(x, y). We define the following queries.

1. Query
(
w, path(x, y)

)
: among all the edges from w that are incident on path(x, y)

in G, return an edge that is incident nearest to x on path(x, y).

2. Query
(
T (w), path(x, y)

)
: among all the edges from T (w) that are incident on

path(x, y) in G, return an edge that is incident nearest to x on path(x, y).

3. Query
(
path(v, w), path(x, y)

)
: among all the edges from path(v, w) that are incident

on path(x, y) in G, return an edge that is incident nearest to x on path(x, y).

Let the descendant vertices of the three queries described above be w, T (w) and
path(v, w) respectively. A set of queries on the data structure D are called independent if
the descendant vertices of these queries are disjoint.

Recall the properties of a DFS tree in undirected graphs described in Section 3.3. We
also described how after any update in the graph, the DFS tree of the updated graph can
be evaluated by rerooting disjoint subtrees of the current DFS tree T , using the components
property. This reduction will henceforth be referred as the reduction algorithm. Since each
of these disjoint subtrees can be rerooted independent of each other, it can be performed
in parallel to each other. However, in order to perform the reduction algorithm efficiently
in parallel, we require a structure to answer the following queries efficiently in parallel (see
Section 3.3). (a) Finding LCA of two vertices in T . (b) Finding the highest edge from a
subtree T (v) to a path in T (a query on data structure D). In addition to these we also
require several other types of queries to be efficiently answered in parallel setting as testing
if an edge is back edge, finding vertices on a path, child subtree of a vertex containing a
given vertex etc. However, these can easily be answered using LCA queries as described
in Section 4.9.1. Thus, we have the following theorem.

Theorem 4.1. Given an undirected graph G and its DFS tree T , any graph update can
be reduced to independently rerooting disjoint subtrees of T by performing O(1) sets of
independent queries on the data structure D and O(1) sets of LCA queries on T , where
each set has at most n queries.

Remark. The implementation of reduction algorithm is simpler in distributed and semi-
streaming environments, where any operation on the DFS tree T can be performed locally
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without any distributed computation or passes over the input graph respectively. Hence, for
these environments the reduction algorithm requires only O(1) sets of independent queries
on the data structure D.

4.4 Rerooting a DFS tree

We now describe the algorithm to reroot a subtree T (r0) of the DFS tree T , from its original
root r0 to the new root r∗. Also, let the data structure D be built on T (see Section 4.3).
Further, we maintain the following invariant: at any moment of the algorithm, every
component c of the unvisited graph can be of the following two types:

C1 : A single subtree τc of the DFS tree T .

C2 : A single ancestor-descendant path pc and a set Tc of subtrees of the DFS tree T
having at least one edge to pc. Note that for any τ1, τ2 ∈ Tc, there is no edge
between τ1 and τ2 since T is a DFS tree.

Moreover, for every component c we also have a vertex rc ∈ c from which the DFS tree of
the component c would be rooted in the final DFS tree T ∗.

The algorithm is divided into log n phases, where each phase is further divided into
log n stages. At the end of phase Pi, every subtree of any component c (τc or subtrees in
Tc) has at most n/2i vertices. During phase Pi, every component has at least one heavy
subtree (having > n/2i vertices). If no such tree exists, we move the component to the
next phase. We denote the set of these heavy subtrees by Tc. For notational convenience,
we refer to the heaviest subtree of every component c as τc, even for components of type
C2. Hence, for any component of type C1 or C2, we have τc ∈ Tc. Clearly the algorithm
ends after log n phases as every component of the unvisited graph would be empty.

At the end of stage Sj of a phase, the length of pc in each component c is at most n/2j .
If |pc| ≤ n/2j , we move the component c to the next stage. Further, for any component c
of type C1, the value of |pc| is zero, so we move such components to the last stage of the
phase, i.e., Slogn. Clearly at the end of log n stages, each component would be of type C1.

In the beginning of the algorithm, we have the component induced by T (r0) of type
C1 where rc = r∗. Note that during each stage, different connected components of the
unvisited graph can be processed independent of each other in parallel.

4.5 Algorithm

We now describe how a component c in phase Pi and stage Sj is traversed by our algorithm.
The aim is to build a partial DFS tree for the component c rooted at rc, that can be
attached to the partially built DFS tree T ∗ of the updated graph. Note that this has to
be performed in such a manner that every component of the unvisited part of c is of type
C1 or C2 only.

Now, in order to move to the next phase, we need to ensure that for every component
c′ of the unvisited part of c, |τc′ | ≤ n/2i. As described above, after log n stages every
component c′ is of type C1. Thus, we perform a disintegrating traversal of τc which
ensures that every component of the unvisited part of c can be moved to the next phase.



67

During Sj , in order to move to the next stage, we need to ensure that for every
component c′ of the unvisited part of c, either |pc′ | ≤ n/2j (moving it to next stage) or
|τc′ | ≤ n/2i (moving it to next phase). The component is processed based on the location
of rc in c as follows. If rc ∈ pc, we perform path halving which ensures the components
move to the next stage. If rc ∈ τ /∈ Tc, we perform a disconnecting traversal of τ followed
by path halving of pc such that the unvisited components of τ are no longer connected to
residual part of pc, moving them to the next phase. The remaining components of c moves
to the next stage due to path halving.

We shall refer to disintegrating traversal, path halving and disconnecting traversal as
the simpler traversals. The difficult case is when rc ∈ τ ∈ Tc. Here, some trivial cases
can be directly processed by the simpler traversals mentioned above. For the remaining
cases we perform heavy subtree traversal of τ which shall ensure that the unvisited part
of c reduces to those requiring simpler traversals. Refer to Procedure Reroot-DFS in
Section 4.8 for the pseudo-code of the main algorithm.

We now describe the different types of traversals in detail. For any component c, we
refer to the smallest subtree of τ ∈ Tc that has more than n/2i vertices as T (vH). Since
n/2i−1 ≥ |τ | > n/2i, vH is unique. Also, let r′ = root(τ) (if rc ∈ τ) and vl = LCA(rc, vH).

4.5.1 Disintegrating Traversal

Consider a component c of type C1 with new root rc ∈ τc in phase Pi (n/2i < |τc| ≤
n/2i−1). We first find the vertex vH . We then traverse along the path(rc, vH), adding
it to T ∗

(
see Figure 4.1 (a)

)
. Now, the unvisited part of c consists of path(par(vl), r

′)
(say p) and the subtrees hanging from path(rc, r

′) and path(vl, vH). Notice that p is
an ancestor-descendant path of T and each subtree has at most n/2i vertices. Refer to
Procedure DisInt-DFS in Section 4.8 for the pseudo code of the traversal.

Now, each subtree not having an edge to p corresponds to a separate component of
type C1. The path p and the remaining subtrees (having an edge to p) form a component
of type C2. For each component c∗, we also need to find the new root rc∗ for the updated
DFS tree of the component. Using the components property, we know rc∗ has the lowest
edge from c∗ on the path p∗, where p∗ is the newly attached path to T ∗ described above.
Both these queries (finding an edge to p and the lowest edge on p∗) can be answered by our
data structure D (see Section 4.3). Thus, every component c∗ can be identified and moved
to next phase. The pseudocode for this procedure of identifying the components and their
corresponding roots, and moving them to the next stage is described in Procedure Process-
Components.

Remark. If rc = r′, this traversal can also be performed on a subtree from a component c
of type C2 achieving similar result. This is possible because no new path p would be formed
and we still get components of type C1 and C2 (being connected to a single path pc).

4.5.2 Path Halving

Consider a component of type C2 with rc ∈ pc = path(x, y). We first find the farther
end of pc, say x, where |path(rc, x)| ≥ |path(rc, y)|. We then traverse from rc to x adding
path(rc, x) to the tree T ∗

(
see Figure 4.1 (b)

)
. The component c′ of type C2 thus formed

will have pc′ of length at most half of pc. Now, the subtrees in c having an edge to pc′
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Figure 4.1: The three simpler traversals (shown using blue dotted lines), (a) Disintegrating traver-
sal, (b) Path Halving and (c) Disconnecting traversal.

would be a part of c′. The remaining subtrees would form individual components of type
C1. Again, the new root of each component can be found using D by querying for the
lowest edge on the path(rc, x) added to T ∗. Refer to Procedure Path-Halving-DFS in
Section 4.8 for the pseudo code.

4.5.3 Disconnecting Traversal

Consider a component of type C2 with rc ∈ τ , where τ /∈ Tc. We traverse τ from rc to
reach pc, which is then followed by path halving of pc. The goal is to ensure that the
unvisited part of τ is not connected to the unvisited part of pc (say p′) after path halving,
moving it to the next phase. The remaining subtrees of c with p′ will move to the next
stage as a result of path halving of pc.

Now, if at least one edge from τ is present on the upper half of pc, we find the highest
edge from τ to pc

(
see Figure 4.1 (c)

)
. Otherwise, we find the lowest edge from τ to pc.

Let it be (x, y), where y ∈ pc and x ∈ τ . This ensures that on entering pc through y, path
halving would ensure that all the edges from τ to pc are incident on the traversed part of
pc (say p).

We perform the traversal from rc to x similar to the disintegrating traversal along
path(rc, x), attaching it to T ∗. Since none of the components of unvisited part of τ are
connected to p′, all the components formed would be of type C1 or C2 as described in
Section 4.5.1. However, while finding the new root of each resulting component c′, we also
need to consider the lowest edge from the component on p. Further, since τ /∈ Tc, size of
each subtree in the resulting components is at most n/2i. Thus, the resultant components
of τ are moved to the next phase (see Procedure DisCon-DFS in Section 4.8 for pseudo
code).

Remark. If rc ∈ T (vH), this traversal can also be performed on a τ ∈ Tc getting a similar
result. This is because each subtree in resultant components of τ will have size at most
n/2i moving it to the next phase. However, if rc /∈ T (vH) we cannot use this traversal
as the resultant component c′ of type C2 formed can have a heavy subtree and a path pc′
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of arbitrary length. This is not permitted as it will move the component to some earlier
stage in the same phase, i.e. violate the phase/stage constraints. Hence, in such a case
we would process the component using heavy subtree traversal described as follows.

4.5.4 Heavy Subtree Traversal

Consider a component c of type C2 with rc ∈ τ , where τ ∈ Tc. As described earlier, if
rc = root(τ) or rc ∈ T (vH), the heavy subtree τ can be processed using disintegrating or
disconnecting traversals respectively. Otherwise, we traverse it using one of three scenarios,
namely l, p or r traversal (see Figure 4.2). Our algorithm checks each scenario in turn for
its applicability to τ , eventually choosing a scenario if it ensures that it can be followed
by a simpler traversal described earlier, to move each component to the next phase or the
next stage. We shall also show that these scenarios are indeed exhaustive, i.e., for any τ ,
one of these scenarios is indeed applicable.

The following lemma describes the conditions for a scenario to be applicable. The
three conditions of this lemma ensures that the traversal can indeed be applied based on
the discussion above. Here, A1 ensures the invariant of component types, A2 ensures the
phase and stage constraints, and A3 ensures that the next traversal in not heavy subtree
traversal (i.e., the new root is, either not from a heavy subtree, or is the root of the heavy
subtree (may be a tree edge), or is from T (vH)).

Lemma 4.5.1 (Applicability Lemma). If there exists a path p∗ starting from rc in a subtree
τ ∈ Tc, every component of unvisited part of c can be moved to the next phase/stage using
a simpler traversal, if p∗ satisfies the following three conditions

A1: Traversal of p∗ produces components of type C1 or C2 only,

A2: If the subtree T (vH) is in a component c′ of type C2, then pc′ = pc.

A3: The lowest edge on p∗ from the component containing pc is not the following edge:
an edge from a heavy subtree (the subtree containing T (vH)), which is a back edge
with its endpoint outside T (vH).

Proof. Consider any traversal satisfying the above criteria, which forms components of
type C1 and C2 only (by A1). For each such component c′, we find the lowest edge e′

from c′ to the traversed path, giving the new root rc′ . Every component which does not
contain pc or T (vH) can be directly moved to the next phase with root rc′ , because the
remaining subtrees of τ (not containing T (vH)) cannot be heavy. In case the component
containing T (vH) is of type C1 it can be moved to the last stage of the phase. In case
the component c′ containing pc does not contain T (vH), we have rc′ ∈ pc or rc′ ∈ τ ′ (a
non-heavy subtree of τ), moving c′ to the next stage after performing path halving or
disconnecting traversal of τ ′ respectively. Due to A2, this only leaves the component c′ of
type C2 having both pc and a subtree T (vh) ∈ Tc′ which contains T (vH).

A3 prevents e′ from satisfying the following three criteria simultaneously: (i) rc′ ∈
T (vh) (heavy subtree), (ii) e′ is a back edge, and (iii) rc′ /∈ T (vH). In case any one of
these three criteria for e′ is false, the traversal of p∗ can be followed by a simpler traversal
as follows. If rc′ /∈ T (vh), it either belongs to a light subtree or pc ensuring disconnecting
traversal or path halving respectively. Otherwise when rc′ ∈ T (vh), being a tree edge or
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having rc′ ∈ T (vH) ensures disintegrating traversal (as rc′ = root(T (vh))) or disconnecting
traversal respectively.

Remark. Applicability lemma is employed when p∗ does not pass through T (vH). Oth-
erwise, the unvisited component trivially moves to the next stage/phase. This is because
if p∗ traverses through T (vH), the resulting subtrees of the new component containing pc
would only have light subtrees.

Overview

We now present a brief overview of the heavy subtree traversal using the applicability
lemma. Essentially we would attempt to perform a traversal that implicitly satisfies the
A1 and A2, and we will verify whether it satisfies A3. After any traversal let the subtree
hanging from the traversed path that contains vH be T (vh). Further, let any subtree
hanging from the traversed path be called an eligible subtree, if it has an edge to pc.

First attempt the simplest traversal for the subtree that goes all the way to the root
r′ from rc. This shall be later referred as l traversal (see Figure 4.2). Clearly it satisfies
A1 and A2. The traversal will not be applicable if it fails A3. To verify A3 we find
the lowest edge (x1, y1) on the traversed path (highest on path(rc, r

′)) from the eligible
subtrees, where y1 is on the traversed path. Thus, A3 will not be satisfied only if this
lowest edge is from T (vh), i.e., x1 ∈ T (vh).

Second attempt would be to use the previous failed condition to our advantage and
perform a traversal using this back edge (x1, y1). Since it was the highest edge, no eligible
subtree can be connected to path(par(y1), r

′). Hence we perform a traversal following
the tree path to x1, followed by (x1, y1) and then downwards to par(vl). This leaves
path(par(y1), r

′) untraversed, which is not connected to any eligible subtree. This shall
be called as a p traversal (see Figure 4.2 (b) assuming (xp, yp) = (x1, y1)). Clearly, such a
traversal satisfies A1 and A2. To verify A3 we find lowest edge (x2, y2) on traversed path
(having suffix as path(y1, par(vl))) from the eligible subtrees, where y2 is on the traversed
path. In this case, A3 will not be satisfied only if this lowest edge is from T (vh) on
path(y1, par(vl)), i.e., x2 ∈ T (vh).

Third attempt would be to use even the second failed condition to our advantage and
perform a traversal using this back edge (x2, y2). Since it was lowest edge, no eligible
subtree can be connected to path(y1, par(vl)). Hence we perform a traversal following the
tree path to x2, followed by (x2, y2) and then upwards to rc. This shall be called as a
r traversal (see Figure 4.2 (c) assuming (xr, yr) = (x2, y2)). Clearly it satisfies A1 and
A2 (except for a minor case described later). To verify A3 we find lowest edge (x3, y3)
on traversed path (highest on the suffix as path(y2, r

′)) from the eligible subtrees, where
y3 is on the traversed path. Again, A3 will not be satisfied if this lowest edge is from
T (vh) on path(y2, r

′), i.e., x3 ∈ T (vh).

Notice that we can also use this new edge (x3, y3) (instead of (x1, y1)) for p traversal
described earlier and it would still satisfy A1 and A2 (except for a minor case described
later). Further, we would also be making progress as whenever the attempt fails, the
computed edge is from the new T (vh). And this edge would be from smaller heavy sub-
tree because the corresponding x will get closer to the inner core T (vH), i.e. has lower
LCA(x, vH) (LCA(x1, vH) > LCA(x2, vH) > LCA(x3, vH)). Thus, we can alternate be-
tween attempting p traversal and r traversal using the newly computed edge, making
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progress to eventually reach the point when A3 is satisfied. However, this progress can
take up to O(n) such attempts, and is the reason for sequentiality of the procedure. In
our main algorithm we show how to perform this procedure using O(1) attempts.

Further, note that both (x1, y1) and (x3, y3) are highest edges on path(rc, r
′) from the

eligible subtrees after l and r traversal respectively. Consider T (vh) after r traversal, for
any x ∈ T (vh) we have LCA(x, vH) lower than LCA(x2, vH). Since LCA(x1, vH) is higher
than LCA(x2, vH), we have x1 /∈ T (vh), i.e., (x1, y1) does not belong to a heavy subtree
after r traversal. Hence, if (x3, y3) was same as (x1, y1), A3 would have been satisfied
by the r traversal. Thus, it is sufficient for applicability of r traversal that (x3, y3) =
(x1, y1). We now describe the condition for (x1, y1) which ensures (x3, y3) = (x1, y1).
Since x1 /∈ T (vh), either x1 ∈ path(vl, vH) or x1 belongs to a light subtree τ1 hanging from
path(vl, vH). Further, y1 would always be at least as high as y3, because it is computed
from a less restricted set of trees. Thus, (x3, y3) is same as (x1, y1) except when (x1, y1)
no longer belongs to an eligible subtree after the r traversal. This is possible only if τ1 is
not eligible or x1 has been traversed by r traversal. Note that since LCA(x2, vH) is lower
than LCA(x1, vH), x1 can only be traversed by r traversal if x1 ∈ path(vl, vH). Thus, to
ensure (x1, y1) = (x3, y3) and hence applicability of r traversal, we require x1 ∈ τ1 where
τ1 is an eligible subtree hanging from path(vl, vH).

Thus, we select the edge for p traversal (instead of simply using (x1, y1)) in such a
way that both non-applicability of r traversal and sequentiality of the procedure can be
avoided. This can be achieved by a careful selection of two edges (xd, yd) and (xp, yp),
such that if (xp, yp) is used for p traversal (instead of (x1, y1)), then after the r traversal
the edge (x3, y3) is same as (xd, yd) (instead of (x1, y1)), which would result in A3 being
satisfied for the r traversal.

Remark. There is a minor case in which the A1 and A2 will not be satisfied in the
r traversal and subsequent p and r traversals described above. Handling this minor case
leads to a special case in which even (xd, yd) may not ensure that A3 is satisfied after
the r traversal. In such a case, we simply augment the r traversal with another simple
traversal eventually satisfying A3.

Definitions

We now briefly describe the three scenarios, namely, l, p and r traversals and define a
few notations related to them (shown in Figure 4.2). The l, p and r traversals follow the
path shown in figure (using blue dotted lines) which shall henceforth be referred as p∗L,
p∗P and p∗R respectively. Both p and r traversals use a back edge during the traversal,
denoted by (xp, yp) and (xr, yr) respectively. Further, we refer to the subtrees containing
vH that hangs from p∗L, p∗P and p∗R as T (vL), T (vP ) and T (vR) respectively (similar to
T (vh) described earlier). Recall that any subtree hanging from the traversed path (p∗L,
p∗P or p∗R), shall be called an eligible subtree, if it has an edge to pc. In each scenario
we ensure A1 and A2 by construction, implying that the scenario will not be applicable
only if A3 is violated. Thus, we only need to find the lowest edge on traversed path from
the eligible subtrees and pc, to determine the applicability of a scenario. Also, the edges
(xp, yp) and (xr, yr) are chosen in such a way that if l and p traversals are not applicable,
then r traversal always satisfies applicability lemma, with the lowest edge from component
containing pc being (xd, yd), where xd ∈ τd 6= T (vR).
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Figure 4.2: The three scenarios for Heavy Subtree Traversal (shown using blue dotted lines), (a) l
traversal, (b) p traversal, and (c) r traversal.

Scenario 1: l traversal

Consider the traversal of p∗L = path(rc, r
′). Since, this traversal does not create a new

non-traversed path, A1 and A2 are implicitly satisfied. Let (x1, y1) be the lowest edge
on p∗L (highest edge on path(rc, r

′)) from pc and the eligible subtrees, where y1 ∈ p∗L. In
case (x1, y1) satisfies A3, we perform the traversal otherwise move to the next scenario.
Consider Figure 4.2 (a), clearly l traversal is applicable as (x1, y1) is not from a heavy
subtree. However, in Figure 4.2 (b) and Figure 4.2 (c), (x1, y1) would be (xp, yp) and
(xd, yd) respectively, both of which does not satisfy A3.

Remark. This scenario is not applicable only if (x1, y1) is a back edge with x1 ∈ T (vL) \
T (vH).

Scenario 2: p traversal

Consider the traversal of p∗P = path(rc, xp) ∪ (xp, yp) ∪ path(yp, par(vl)). To perform this
traversal, we choose (xp, yp) along with (xd, yd) such that if p traversal using (xp, yp) is not
applicable then r traversal using (xd, yd) is necessarily applicable. We now describe how
such a choice of (xp, yp) and (xd, yd) can be made. Let τd and τp (if any), be the subtrees
hanging from path(vL, vH) containing xd and xp respectively.

Choice of (xp, yp) and (xd, yd)

We find the highest edge on path(rc, r
′) from the eligible subtrees hanging from p∗L except

T (vL), and the subtrees hanging from path(vL, vH) having a back edge to pc. This edge is
stored as (xd, yd), where yd ∈ path(rc, r

′), and shall be used in Scenario 3. The intuition
behind such a computation of (xd, yd) can be derived from the condition for applicability
of r traversal (see overview). The corresponding subtree (among the queried subtrees),
to which xd belongs is τd. Note that (xd, yd) may not necessarily exist. Next, we find
the edge (xp, yp) as follows. Consider all the back edges (xi, yi) having xi ∈ T (vL) and
yi ∈ path(yd, r

′) (or yi ∈ path(rc, r
′) if (xd, yd) does not exist). The tree path path(yi, xi)



73

deviates from path(vL, vH) on the vertex LCA(xi, vH). We choose (xp, yp) as the edge
(xi, yi) whose corresponding tree path path(yi, xi) deviates lowest from path(vL, vH), i.e.,
having the lowest LCA(xi, vH). The intuition behind such a computation of (xp, yp) can
described as follows. Firstly, yi ∈ path(yd, r

′) ensures that after p traversal, no eligible sub-
tree (including τd) is connected to remaining part of path(rc, r

′) (by definition of (xd, yd))
violating A1. Secondly, choosing an edge with lowest LCA(xi, vH) avoids the sequentiality
of our procedure (see overview), This procedure to compute (xp, yp) is crucial to prove
the desired properties of (xp, yp) and (xd, yd) (later in Scenario 3). Additionally, the ex-
istence of back edge (x1, y1) (see remark of l traversal) implies the following property of
the computed edges (xp, yp).

Lemma 4.5.2. The edge (xp, yp), which is a back edge, always exists and when used for
p traversal satisfies A1 and A2.

Proof. Recall that (x1, y1) is the highest edge on path(rc, r
′) from the eligible subtrees

hanging from the p∗L , whereas (xd, yd) is the highest edge on path(rc, r
′) from a more

restricted set of subtrees. Thus, y1 is at least as high as yd on path(rc, r
′). Now, since

(x1, y1) is a back edge with x1 ∈ T (vL) (see remark in Scenario 1), (x1, y1) is also a
valid edge for (xp, yp) ensuring its existence of p edge. Further, (xp, yp) is also a back
edge because (x1, y1) is a back edge and LCA(xp, vH) is at most as high as LCA(x1, vH)
ensuring xp 6= vL.

Now, consider the p traversal using (xp, yp), which produces an untraversed path, say
p′ = path(par(yp), r

′). To prove that this traversal produces only components of type C1
and C2 (the conditionA1), we only need to prove that any eligible subtree (subtree hanging
from p∗P with an edge to pc) is not connected to p′. This is because p′ itself is not connected
directly to pc by an edge (as x1 /∈ pc). We first prove this property for the subtrees queried
for finding (xd, yd). Since yp is at least as high as yd on path(rc, r

′), any such subtree will
not be connected to p′. Now, we are left to prove this property for the remaining subtrees
of T (vL) hanging from p∗P with an edge to pc. The only such subtree is T (vP ), the subtree
hanging from p∗P which contains T (vH) (satisfying A2). Since, among all the edges (x, y)
from T (vL) to path(yd, r

′), xp is the vertex with lowest LCA(x, vH), the subtree T (vP ) is
not connected to p′. This is because for any such edge (x, y), where x ∈ T (vP ), would have
LCA(x, vH) lower than vP , which is clearly lower than LCA(xp, vH) on path(vL, vH).

Lemma 4.5.2 ensures that our traversal can follow p∗P satisfying A1 and A2. To verify
A3 we find the new root for the component having path pc as follows. Let (x2, y2) be the
lowest edge on p∗P from pc and the eligible subtrees hanging from p∗P , where y2 ∈ p∗P . In
case (x2, y2) satisfies A3, we perform the traversal otherwise move to the next scenario.
Consider Figure 4.2 (b), clearly p traversal is applicable as (x2, y2) is not from a heavy
subtree. However, in Figure 4.2 (c) we have (xp, yp) same as (xd, yd), and hence (x2, y2) is
(xr, yr) which clearly does not satisfy A3.

Remark. This scenario is not applicable only if (x2, y2) is a back edge with x2 ∈ T (vP ) \
T (vH).

Scenario 3: r traversal

Consider the traversal of p∗R = path(rc, xr) ∪ (xr, yr) ∪ path(yr, r
′). We choose (x2, y2) as

(xr, yr). The r traversal using this edge creates an untraversed path on path(rc, r
′), i.e.,
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path(par(vl), y2)\{y2}. However, such a traversal would not necessarily satisfy A1 and
A2 (recall the minor case mentioned in the overview) as follows. While computing (x2, y2),
some portion of τp (if exists) could have been a part of p∗P . Hence, if we perform r traversal
using (x2, y2) as (xr, yr), it is possible that τp (now untraversed by p∗R) is connected to this
untraversed path(par(vl), y2)\{y2} in addition to pc. Thus, we would have a component
which is not of type C1 or C2 violating A1. We avoid this problem as follows. Let (x′2, y

′
2)

be the lowest edge from τp to path(rc, r
′), where y′2 ∈ path(rc, r

′). Thus, if y′2 is lower than
yr on path(rc, r

′), we choose (x′2, y
′
2) as (xr, yr). The existence of back edge (x2, y2) (see

remark of p traversal) implies the following property of (xr, yr).

Lemma 4.5.3. The edge (xr, yr), which is a back edge, always exists and when used for
r traversal satisfies A1 and A2.

Proof. Existence of (x2, y2) clearly implies the existence of (xr, yr). Further, (xr, yr) is a
back edge since both choices for it are back edges, i.e., (x2, y2) (see remark in Scenario 2)
and (x′2, y

′
2) (as root(τp) 6= vL).

Now, consider the r traversal using (xr, yr), which produces an untraversed path, say
p′ = path(par(vl), yr)\{yr}. To prove that this traversal produces only components of type
C1 and C2 (hence satisfies A1), we only need to prove that any eligible subtree (subtree
hanging from p∗R with an edge to pc) is not connected to p′. This is because p′ itself is
not connected directly to pc by an edge (as x2 /∈ pc). Now, the only such subtrees not
queried while computing (x2, y2) is τp, which is queried while computing (x′2, y

′
2). Hence

for either choice for (xr, yr) ((x2, y2) or (x′2, y
′
2)), no eligible subtree will be connected to

p′ (ensuring A2).

Thus, Lemma 4.5.3 ensures that our traversal can follow p∗R as shown in Figure 4.2
(c). To verify A3 we find the new root for the component having path pc as follows. Let
(x3, y3) be the lowest edge on p∗R from pc and the eligible subtrees hanging from p∗R, where
y3 ∈ p∗R. In case this edge satisfies A3, we perform this traversal otherwise it can be
proved to be a special case which can be handled by a modified r traversal described in
the next section. Refer to Procedure Heavy-DFS in Section 4.8 for the pseudo code of this
traversal. Consider Figure 4.2 (c), clearly r traversal is applicable as (x3, y3) = (xd, yd) is
not from a heavy subtree.

Remark. This scenario is not applicable only if (x3, y3) is a back edge with x3 ∈ T (vR) \
T (vH).

The following lemma describes when (x3, y3) satisfies the applicability lemma. Our aim
was to compute (xd, yd) such that it can be used after the r traversal to satisfy A3 (i.e.
(x3, y3) = (xd, yd)), to make the r traversal eligible (see overview). However, because of the
minor case described earlier this may not always be true. We now present the conditions
which necessarily makes it true.

Lemma 4.5.4. The r traversal using the edge (xr, yr) is applicable with (x3, y3) = (xd, yd),
if either τd 6= τp or (xr, yr) 6= (x′2, y

′
2).

Proof. We shall prove this in two steps. First, we will prove that no edge from an eligible
subtree on p∗R would be lower than (xd, yd). Thereafter, we would prove why A3 would
be satisfied making r traversal eligible if (x3, y3) = (xd, yd) holds and the conditions for
the same.
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Recall the computation of (xp, yp) and (xd, yd). Since (xp, yp) is the edge from T (vL) to
path(yd, r

′) whose tree path deviates lowest from path(vL, vH), the subtree T (vP ) does not
have an edge to path(yd, r

′). Now, T (vR) is a subtree of T (vP ) as xr ∈ T (vP ) ∪ τp (recall
(x2, y2) and (x′2, y

′
2)), and hence T (vR) cannot have an edge on path(rc, r

′) higher than
(xd, yd). Also, the remaining eligible subtrees queried while computing (x3, y3) were also
queried while computing (xd, yd). Hence, no edge from an eligible subtree on p∗R would be
lower than (xd, yd).

Clearly if (x3, y3) = (xd, yd), A3 is satisfied as τd is a light subtree. Hence after the r
traversal, A3 is violated or (x3, y3) 6= (xd, yd) only if (xd, yd) is no longer an edge from an
eligible subtree. Note that this is possible if p∗R passes through τd, and either traverses xd
or disconnects it from pc. Now, if (xr, yr) = (x2, y2) p

∗
R cannot pass through τd. This is

because T (vP ) and τd are disjoint as LCA(xp, vH) is at least as low as LCA(xd, vH) (by
definition of (xp, yp)). Thus, it is only possible when (xr, yr) = (x′2, y

′
2) because τp can be

same as τd. Hence, (x3, y3) 6= (xd, yd) only if both τp = τd and (xr, yr) = (x′2, y
′
2).

We now present an overview of how the special case can be handled. Using Lemma 4.5.4,
the special case is when r traversal is not applicable and hence (xr, yr) = (x′2, y

′
2) and

τp = τd. Thus, both the lowest and the highest edges on path(rc, r
′), i.e., (xp, yp) and

(xr, yr), from an eligible subtree hanging from path(vL, vH) belong to τd. Moreover, since
τd hangs from path(vL, vH), it does not contain T (vH). This ensures that if modified r′

traversal is performed ignoring τd, it can be followed by a disconnecting traversal of τd
described as follows.

Special case of heavy subtree traversal

In this section (xp, yp) and (xr, yr) correspond to the back edges used in p and r traver-
sals described earlier, whereas (xr′ , yr′) corresponds to the back edge used in modified r′

traversal described below. We now recall the conditions leading to the special case, and
describe its implications on (xp, yp), (xr, yr) and (xd, yd).

Lemma 4.5.5. The conditions of the special case are (i) x3 ∈ T (vR), (ii) xp ∈ τd, and
(iii) (xr, yr) = (x′2, y

′
2). Following are the properties of (xp, yp) and (xd, yd) in this case.

1. yd = yp, y3 is lower than yd on path(rc, r
′), and yr is lower than y2 on path(rc, r

′).

2. No subtree of τd hanging from path(root(τd), xp), with an edge to pc, has an edge
lower than y2 on path(rc, r

′).

3. No subtree of τd hanging from path(root(τd), xr), with an edge to pc, has an edge
higher than y3 on path(rc, r

′).

Proof. Recall the choice of (xd, yd) and (xp, yp) (see Section 4.5.4), it was the highest edge
from τd on path(rc, r

′) and (xp, yp) was computed such that yp ∈ path(yd, r
′). Hence, if

xp ∈ τd we necessarily have yd = yp. Also, y3 is strictly lower than yp (or yd) else having a
lower LCA(x3, vH) than LCA(xp, vH), (x3, y3) would have been selected as (xp, yp) earlier.
Finally, y2 is strictly higher than yr otherwise (x2, y2) would have been selected as (xr, yr)
earlier. Second property holds since (x2, y2) (where x2 ∈ T (vP )) was the lowest edge on
path(rc, r

′) from the eligible subtrees after p traversal. Third property holds since (x3, y3)
(where x3 ∈ T (vR)) was the highest edge on path(rc, r

′) from the eligible subtrees after r
traversal.
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Figure 4.3: The three traversals for special case of Heavy Subtree Traversal (shown using blue
dotted lines) followed by a modified r′ traversal (shown using blue dashed lines). (a) Root traversal
of τd, (b) Upward cover traversal of p1 through τ ′, and (c) Downward cover traversal of p1 using
a direct edge (x′, y′).

To handle this special case, we revisit the scenario corresponding to r traversal ignoring
the eligible subtree τd. Hence, we choose (xr′ , yr′) = (x2, y2) despite having a lower edge
(xr, yr). Thus, after r′ traversal we have a subtree τd connected to two paths, pc and
the unvisited part of path(rc, r

′), which violates A1. Now, based on the lowest edge from
component containing pc on the traversed path p∗R′ , we append simple traversals to this
modified r′ traversal in order to satisfy A1. We shall shortly see that in these traversals
the conditions A2 and A3 are implicitly true.

Modified r′ traversal

Consider a modified r′ traversal using (xr′ , yr′) = (x2, y2) of the path p∗R′ = path(rc, x2)∪
(x2, y2) ∪ path(y2, r

′) (see Figure 4.3 (a)). This leaves an untraversed part of path(rc, r
′),

i.e., path(par(vl), y2)\{y2} (say p1). Using Lemma 4.5.5 we know that y2 is strictly higher
than yr ensuring yr ∈ p1. Now, the computation of (x2, y2) ensures that no eligible subtree
except for τd is connected to path p1 as well as the lowest edge on p∗R′ from an eligible
subtree is from τd, i.e., (xd, yd). This implicitly satisfies A2 and A3, if the appended
traversal does not traverse any part of T (vR′) or pc. However, since τd is connected to
two paths p1 and pc (violating A1), we need to append p∗R′ with another traversal which
disconnects the unvisited part of τd from the unvisited part of p1.

Now, the only eligible subtree having an edge to p1 is τd. Still the lowest edge on
p∗R′ from the component having pc may not be from τd. This is because p1 and subtrees
connected to it are also in the component containing pc (since τd has an edge on p1). Thus,
depending on the lowest edge on p∗R′ from the component containing pc, say (x, y) with
y ∈ p∗R′ , we have three cases (see Figure 4.3). If x ∈ τd, we simply perform a root traversal
of τd exploiting property 2 of Lemma 4.5.5 to disconnect pc and p1. On the other hand if
x ∈ p1 or some subtree connected to p1, we shall perform a cover traversal of p1, which
visits all vertices on p1 that are connected to τd. As a result, the unvisited part of p1 is
disconnected from τd. Since yr is the lowest edge from τd on p1, in case x is lower than
yr on p1, we simply traverse upwards covering yd and other endpoints of edges from τd
incident on p1. Else we traverse downwards after making sure that no endpoints of edges
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from τd that incident on p1 are above x.

Root Traversal of τd

In this case the lowest edge on p∗R′ from component containing pc is from τd, i.e., (xd, yd).
The traversal of p∗R′ is followed by the traversal of pR′ = (yp, xp)∪ (xp, root(τd)) as shown
in Figure 4.3 (a). Hence, using property 2 in Lemma 4.5.5, no subtree of τd hanging from
pR′ is connected to pc (satisfying A1). As described earlier, since T (vR′) does not have an
edge to τd, after the traversal of p∗R′ ∪ pR′ , the component having pc would have the new
root in τd or pc (satisfying A3).

Cover traversal of p1

In this case the lowest edge from component containing pc on p∗R′ is from p1, say (x′, y′),
or some subtree τ ′, say (yτ ′ , y

′), which is connected to p1, where y′ ∈ p∗R′ . If connected
through τ ′, we choose the highest edge (x′, xτ ′) from τ ′ on p1, with x′ ∈ p1. If x′ is
lower than yr, we perform the upward traversal towards y2. Otherwise we perform the
downward traversal towards vl. In case of upward traversal, when connected through τ ′,
we update (x′, xτ ′) to be the lowest edge from τ ′ on p1, which still maintains x′ to be lower
than yr. Note that this choice of (x′, xτ ′) ensures that path(yτ ′ , xτ ′) is a disconnecting
traversal of τ ′ from p1 in both upward and downward traversals. We also define this
path from y′ to x′ as pτ ′ , i.e., when connected through τ ′ (see Figure 4.3 (b)), we have
pτ ′ = (y′, yτ ′) ∪ path(yτ ′ , xτ ′) ∪ (xτ ′ , x

′). Otherwise, in case of direct edge when x′ ∈ p1
(see Figure 4.3 (c)), we have pτ ′ = (y′, x′).

1. Upward traversal on p1
In case x′ is lower than yr, the traversal of p∗R′ is followed by the traversal of pR′ =
pτ ′ ∪ path(x′, y2)\{y2} (see Figure 4.3 (b)). Since pR′ is a disconnecting traversal of
τ ′ from p1, the unvisited part of p1, say p′1, is not connected to the unvisited part
of τ ′. Also, p′1 is not connected to τd and hence the component containing pc as
yr /∈ p′1. Since the unvisited part of τ ′ is also not connected to pc, A1 is satisfied.
As described earlier, the component having pc will have the new root in τd, being
the only part of the component connected to pR′ . Since τd is not a heavy subtree,
A3 is also satisfied.

2. Downward traversal on p1
In case x′ is higher than yr and we follow the traversal downwards, path(x′, y2)\{y2}
might still have edges from τd. Hence, we modify the traversal of p∗R′ as fol-
lows. Let the lowest edge on path(x′, y2) \ {x′, y2} from τd be (x∗r , y

∗
r ), where

y∗r ∈ p1. In case (x∗r , y
∗
r ) doesn’t exist, we simply choose (x∗r , y

∗
r ) = (x2, y2). We

now perform a modified r′′ traversal using (xr′′ , yr′′) = (x∗r , y
∗
r ) traversing the path

p∗R′′ = path(rc, x
∗
r) ∪ (x∗r , y

∗
r ) ∪ path(y∗r , r

′) (see Figure 4.3 (c)). Since y∗r is higher
than x′, again the path from lowest edge on p∗R′′ from the component containing pc,
to p1 would correspond to pτ ′ . This traversal is then followed by the traversal of
pR′′ = pτ ′ ∪ path(x′, par(vl)) as shown in Figure 4.3 (c). Since pR′′ is a disconnecting
traversal of τ ′ from p1, the unvisited part of p1, say p′1, is not connected to the
unvisited part of τ ′. Also, p′1 would not be connected to τd and hence component
containing pc, because y∗r was the lowest edge above x′ on p1 from τd. Since the
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unvisited part of τ ′ is not connected to pc, A1 is satisfied. As described earlier,
the component having pc will have the new root in τd, being the only part of the
component connected to pR′ . Since τd is not a heavy subtree, A3 is also satisfied.

Thus, in all the cases of Special Case of heavy path traversal, one of the traversals
described above is necessarily applicable. Refer to Procedure Heavy-Special in Section 4.8
for pseudo code.

4.6 Correctness:

To prove the correctness of our algorithm, it is sufficient to prove two properties. Firstly,
the components property is satisfied in each traversal mentioned above. Secondly, every
component in a phase/stage, abides by the size constraints defining the phase/stage. By
construction, we always choose the lowest edge from a component to the recently added
path in T ∗ ensuring that the components property is satisfied. Furthermore, in different
traversals we have clearly proved how each component progresses to the next stage/phase
ensuring the size constraints. Thus, the final tree T ∗ returned by the algorithm is indeed
a DFS tree of the updated graph.

4.7 Analysis

We now analyze a stage of the algorithm for processing a component c. In each stage,
our algorithm performs at most O(1) traversals of each type described above. Let us
first consider the queries performed on the data structure D. Every traversal described
above performs O(1) sets of these queries sequentially, where each set may have O(|c|)
parallel queries (refer to Section 4.8 for the pseudo code). Moreover, each of these sets is
an independent set of parallel queries on D (recall the definition of independent queries in
Section 4.3). This is because in each set of parallel queries, different queries are performed
either on different untraversed subtrees of currently processed subtree or on the traversed
path in the currently processed subtree. The remaining operations (excluding queries to
D) clearly requires only the knowledge of the current DFS tree T (and not whole G).
Hence, they can be performed locally in the distributed and semi-streaming environment.
In the parallel setting, these operations can be efficiently reduced to performing O(1) sets
of LCA queries on the DFS tree T using |c| vertices (similar to reduction algorithm in
Section 4.3) Refer to Section 4.9 for the details. Since our algorithm requires log n phases
each having log n stages, we get the following theorem.

Theorem 4.2. Given an undirected graph and its DFS tree T , any subtree τ of T can be
rerooted at any vertex r′ ∈ τ by sequentially performing O(log2 n) sets of O(|τ |) indepen-
dent queries on D. In the semi-streaming or distributed model, it additionally performs
some local computation requiring only the subtree τ . In the parallel model, it additionally
performs O(log2 n) sequential sets of O(|τ |) LCA queries on T .
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Procedure Reroot-DFS(rc, pc, Tc): Traversal enters through rc into the component
c containing a path pc and set of trees Tc.
/* Let current phase be Pi and current stage be Sj */

τc ← Heaviest tree in Tc;
T (vH)← Smallest subtree having size at least n/2i;
if |τc| ≤ n/2i then Return Reroot-DFS(rc, pc, Tc) in next phase;
if |pc| ≤ n/2j then Return Reroot-DFS(rc, pc, Tc) in next stage;

/* Disintegrating Traversal */

if pc = φ or rc = root(τc) then Return DisInt-DFS(rc, pc, Tc);
/* Disconnecting Traversal */

if rc /∈ Tc ∪ {pc} or rc ∈ T (vH) then Return DisCon-DFS(rc, pc, Tc);
if rc ∈ pc then Return Path-Halving(rc, pc, Tc, φ); /* Path Halving */

Heavy-DFS(rc, pc, Tc) ; /* Heavy Subtree Traversal */

4.8 Pseudo codes of Traversals in Rerooting Algorithm

4.9 Implementation in the Parallel Environment

We assign |c| processors to process a component c, requiring overall n processors. We first
present an efficient implementation of D and the operations on T used by our algorithm.

4.9.1 Basic Data Structures

The data structure maintained by our algorithm uses the following classical results for
finding the properties of a tree on an EREW PRAM.

Theorem 4.3 (Tarjan and Vishkin [TV84]). A rooted tree on n vertices can be processed
in O(log n) time using n processors to compute post order numbering of the tree, level and
number of descendants for each vertex on a EREW PRAM.

Theorem 4.4 (Schieber and Vishkin [SV88]). A rooted tree on n vertices can be prepro-
cessed in O(log n) time using n processors on an EREW PRAM such that k LCA queries
can be answered in O(1) time using k processors on a CREW PRAM.

Using the standard simulation model [JáJ92] for converting a CRCW PRAM algorithm
to EREW PRAM algorithm at the expense of extra O(log n) factor in the time complexity,
we get the following theorem.

Theorem 4.5. A rooted tree on n vertices can be preprocessed in O(log n) time using n
processors on an EREW PRAM such that any k LCA queries can be answered in O(log n)
time using k processors on an EREW PRAM.

We also use the following classical result to sort and hence report maximum/minimum
of a set of n numbers on an EREW PRAM.

Theorem 4.6 (Cole [Col88, Col93]). A set of n numbers can be sorted using parallel merge
sort in O(log n) time using n processors on an EREW PRAM.
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Procedure Process-Components(P, T , p∗): Moves components created of type C1
and components created with p ∈ P of type C2 to the next stage, after traversal
of p∗ = p1 ∪ p2 ∪ p3, the newly added path in T ∗. Here, p ∈ P, p1, p2 and p3 are
ancestor-descendant paths of T and traversal of p∗ ensures components of type C1
and C2 with paths in P only.

foreach p ∈ P do /* p = path(x, y), where x lower in T ∗ */

foreach τ ∈ T in parallel using |τ | processors do
if Query

(
τ, path(x, y)

)
6= φ then /* ∃ edge from τ to p */

T ← T \ {τ}, Tp ← Tp ∪ {τ};
end

end
for p′ ∈ {p3, p2, p1} do /* p′ = path(x′, y′), where x′ lower in T ∗ */

{xp, yp} ← Query
(
p, path(x′, y′)

)
; /* where xp ∈ p */

foreach τ ∈ Tp do (xτ , yτ )← Query
(
τ, path(x′, y′)

)
; /* where xτ ∈ τ */

{xp, yp} ← Lowest edge on T ∗ among (xp, yp) and (xτ , yτ ), ∀τ ∈ Tp;
if (xp, yp) is a valid edge then break;

end
Add (xp, yp) to T ∗;
Reroot-DFS(xp, p, Tp) in current stage;

end
foreach τ ∈ T in parallel using |τ | processors do
T ← T \ τ ;
for p′ ∈ {p3, p2, p1} do /* p′ = path(x′, y′), where x′ lower in T ∗ */

(xτ , yτ )← Query
(
τ, path(x′, y′)

)
; /* where xτ ∈ τ */

if (xτ , yτ ) is a valid edge then break;

end
Add (yτ , xτ ) to T ∗;
Reroot-DFS(xτ , φ, {τ}) in next stage;

end

Procedure DisInt-DFS(rc, pc, Tc): Disintegrating Traversal of a component c having
a path pc and a set of trees Tc through the root rc ∈ τ ∈ Tc, where either |pc| = 0 or
rc = root(τ).

T (vH)← Smallest subtree τ ′ of τ , where |τ ′| > n/2i;
T ← Subtrees hanging from path

(
rc, root(τ)

)
;

T (vh)← Subtree from T containing vH ;
T ← T \ T (vh)∪ Subtrees hanging from path(vh, vH);
Add path(rc, vH) to T ∗;

if |pc| 6= 0 then p← pc; T ← T ∪ Tc\τ ; /* Component of type C2 */

else p← path
(
par
(
par(vh)

)
, root(τ)

)
; /* remaining part of path

(
rc, root(τ)

)
*/

Process-Components
(
{p}, T , path(rc, vH)

)
; /* Goes to DisCon-DFS or next

phase */
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Procedure Path-Halving-DFS(rc, pc, Tc): Traversal of a component c having a path
pc and a set of trees Tc through the root rc ∈ pc.
pc ← pc \ path(rc, x) ; /* pc = path(x, y) where |path(x, rc)| ≥ |path(y, rc)| */
p∗ ← path(rc, x);
Add p∗ to T ∗;
Process-Components

(
{pc}, Tc, p∗

)
; /* Goes to next stage */

Procedure DisCon-DFS(rc, pc, Tc): Disconnecting Traversal of a component c hav-
ing a path pc and a set of trees Tc through the root rc, where either rc ∈ τ /∈ Tc or
rc ∈ T (vH).

/* pc = path(u, v), where u is ancestor of v */

if τ has an edge to upper half of pc then
(x, y)← Lowest edge from τ to pc; p

′
c ← path(y, u) ; /* where x ∈ τ */

else (x, y)← Highest edge from τ to pc; p
′
c ← path(y, v) ; /* where x ∈ τ */

T ← Subtrees hanging from path
(
rc, root(τ)

)
;

T (v)← Subtree from T containing x;
T ← T \ T (v)∪ Subtrees hanging from path(v, x);

p← path
(
par
(
par(v)

)
, root(τ)

)
; /* remaining part of path

(
rc, root(τ)

)
*/

p∗ ← path(rc, x) ∪ (x, y) ∪ p′c;
Add p∗) to T ∗;
Process-Components

(
{p, pc \ p′c}, T ∪ Tc \ {τ}, p∗

)
; /* Goes to next

stage/phase */
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Procedure Heavy-DFS(rc, pc, Tc): Heavy Subtree Traversal of a component c having
a path pc and a set of trees Tc through the root rc ∈ τ ∈ Tc, where r′ = root(τ)

T (vH)← Smallest subtree τ ′ of τ , where |τ ′| > n/2i;
/* Considering Scenario 1. */

T ← Subtrees hanging from path
(
rc, r

′) with edge in pc;
T (vL)← Subtree from T containing vH ;
p∗ ← path

(
rc, r

′);
(x1, y1)← Highest edge to p∗ from τ ′ ∈ T and pc ; /* where y1 ∈ p∗ */

if x1 /∈ T (vL)or x1 ∈ T (vH) or x1 = vL or x1 ∈ pc then
Add p∗ to T ∗;
T ← Subtrees hanging from p∗;
Return Process-Components

(
{pc}, T ∪ Tc\τ, p∗

)
;

/* Goes to DisConn, DisInt or Path-Halving */

end
/* Considering Scenario 2. */

T ← T \ T (vL)∪ Subtrees hanging from path(vL, vH) with edge in pc;
(xd, yd)← Highest edge to p∗ from τ ′ ∈ T ; /* where xd ∈ T ′ */
if (xd, yd) = φ then yd = rc;
(xp, yp)← {(x′, y′) : x′ ∈ T (vL), y′ ∈ path(yd, r

′) of minimum LCA(x′, vH)};
p∗ ← path(rc, xp) ∪ (xp, yp) ∪ path

(
yp, par(vl)

)
;

T ← Subtrees hanging from path
(
rc, r

′) with edge in pc;
T ← T \ T (vL)∪ Subtrees hanging from path(vL, xp) with edge in pc;
(x2, y2)← Lowest edge to p∗ from τ ′ ∈ T or pc ; /* where y2 ∈ p∗ */

T (vP )← The subtree hanging from path(vL, xp) having vH ;

if x2 /∈ T (vP )or x2 ∈ T (vH) or x2 = vP or x2 ∈ pc then
Add p∗ to T ∗;
T ← Subtrees hanging from path(rc, r

′) and path(vL, xp) ;
Return Process-Components

(
{pc, path

(
par(yp), r

′)}, T ∪ Tc\τ, p∗);
/* Goes to DisConn, DisInt or Path-Halving */

end
/* Considering Scenario 3. */

τd ← Subtree hanging on path(vL, vH) having xd;
(x′2, y

′
2)← Lowest edge from τd to (rc, yp);

if y2 lower than y′2 then (xr, yr)← (x′2, y
′
2);

else (xr, yr)← (x2, y2);
p∗ ← path(rc, xr) ∪ (xr, yr) ∪ path

(
yr, r

′);
T ← Subtrees hanging from path

(
rc, r

′) with edge to pc;
T ← T \ T (vL)∪ Subtrees hanging from path(vL, xr) with edge to pc;
(x3, y3)← Lowest edge to p∗ from τ ′ ∈ T or pc ; /* where y3 ∈ p∗ */

T (vR)← The subtree hanging from path(vL, xr) having vH ;

if x3 /∈ T (vR)or x3 ∈ T (vH) or x3 = vP or x3 ∈ pc then
Add p∗ to T ∗;
T ← Subtrees hanging from path(rc, r

′) and path(vL, xr) ;
Return Process-Components

(
{pc, path

(
par(vl), yr

)
\ {yr}}, T ∪ Tc\τ, p∗

)
;

/* Goes to DisConn, DisInt or Path-Halving */

end
Heavy-Special(rc, pc, Tc);
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Procedure Heavy-Special(rc, pc, Tc): Special Case of Heavy Subtree Traversal of a
component c having a path pc and a set of trees Tc through the root rc ∈ τ ∈ Tc.
/* Modified r′ traversal. */

p∗R′ ← path(rc, x2) ∪ (x2, y2) ∪ path
(
y2, root(τ)

)
;

p1 ← path(par(vl), y2)\{y2};
T ← Subtrees hanging from path

(
rc, root(τ)

)
with edge to p1;

T ← T \ T (vL)∪ Subtrees hanging from path(vL, x2) with edge to p1;
(x′, y′)← Lowest edge to p∗R′ from τ ′ ∈ T or p1 ; /* where y′ ∈ p∗R′ */
if y′ at most as high as yp then

/* Root Traversal of τd. */

pR′ ← (yp, xp) ∪ path(xp, root(τd));
Add p∗R′ and pR′ to T ∗;
T ← Subtrees hanging from path(rc, root(τ))\{T (vL)} ;
T ← T ∪ Subtrees hanging from path(vL, x2)\{τd} ;
T ← T ∪ Subtrees hanging from path(xd, root(τd)) ;
Return Process-Components

(
{pc, p1}, T ∪ Tc\τ, p∗R′ ∪ pR′

)
/* Goes to

DisConn, DisInt or Path-Halving */

end

/* Cover traversal of p1 */

if x′ /∈ p1 then /* Connected to p1 through τ ′ */
yτ ′ ← x′;
{x′, xτ ′} ← Highest edge on p1 from τ ′ ; /* where x′ ∈ p1 */

end

if x′ at most as high as yr on p1 then
/* Upward Cover Traversal of p1. */

if xτ ′ 6= φ then {x′, xτ ′} ← Lowest edge on p1 from τ ′ /* where x′ ∈ p1 */ ;
pR′ ← pτ ′ ∪ path(x′, y2)\{y2};
p′1 ← path(par(vl), x

′)\{x′};
T ← Subtrees hanging from path(vL, x2) ;

else
/* Lower Cover Traversal of p1. */

(x∗r , y
∗
r )← Highest edge from τd to path(par(yr), y2)\{y2} ; /* where

y∗r ∈ path(yr, y2) */

if (x∗r , y
∗
r ) = φ then (x∗r , y

∗
r )← (x2, y2);

p∗R′ ← path(rc, x
∗
r) ∪ (x∗r , y

∗
r ) ∪ path

(
y∗r , root(τ)

)
;

pR′ ← pτ ′ ∪ path(x′, par(vl));
p′1 ← path(par(x′), y∗r )\{y∗r};
T ← T ∪ Subtrees hanging from path(vL, x

∗
r) ;

end
if xτ ′ 6= φ then /* Connected to p1 through τ ′ */

pτ ′ ← (y′, yτ ′) ∪ path(yτ ′ , xτ ′) ∪ (xτ ′ , x
′);

p∗τ ′ ← path(LCA(xτ ′ , yτ ′), root(τ
′));

Tτ ′ ← Subtrees hanging from path(xτ ′ , yτ ′) and path(LCA(xτ ′ , yτ ′), root(τ
′)) ;

else pτ ′ ← (y′, x′); p∗τ ′ = φ; Tτ ′ = φ;
Add p∗R′ and pR′ to T ∗;
T ← T ∪ Tτ ′∪ Subtrees hanging from path(rc, root(τ))\{T (vL)} ;
Return Process-Components

(
{pc, p′1, p∗τ ′}, T ∪ Tc\τ, p∗R′ ∪ pR′

)
;

/* Goes to DisConn, DisInt or Path-Halving */
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4.9.2 Implementation of operations on T

As described earlier several properties of T can be reported in O(1) time using the data
structures described in Theorem 4.3 and Theorem 4.5.

1. Determine whether an edge (x, y) is a back edge in T
This query can easily be answered by finding l = LCA(x, y). If l = x or l = y the
edge (x, y) is a back edge in T . Hence, reporting whether an edge is a back edge can
be reduced to finding LCA of two vertices in T .

2. Finding length of a path
Compare the level of the two endpoints as reported by structure in Theorem 4.3.

3. Given x ∈ T (y), find child y′ of y such that x ∈ T (y′)
For each vertex v of the graph perform the following in parallel (using |T (y)| pro-
cessors): if par(v) is y and LCA(v, x) is v then report v. This query too reduces to
finding LCA of two vertices in T .

4. Determine whether x lies on path(y, z), where y is ancestor of z
If LCA(x, z) = x and LCA(x, y) = y, then x lies on path(y, z).

5. Finding subtrees hanging from a path(x, y), where x is ancestor of y
For each vertex v of the graph perform the following in parallel (using total n pro-
cessors), if LCA(v, y) = par(v) then T (v) is a subtree hanging from the path.

The number of processors required for the last three queries is equal to the size of
the corresponding component, remaining queries requiring a single processor each. Thus,
using Theorem 4.6 and procedures described above we have the following theorem

Theorem 4.7. The DFS tree T of a graph can be preprocessed to build a data structure
of size O(n) in O(log n) time using n processors, such that the following queries can be
answered in parallel in O(log n) time on an EREW PRAM.

• LCA of two vertices, size of a subtree, testing if an edge is back edge and length of
a path using a single processor per query.

• Finding vertices on a path, subtrees hanging from a path, child subtree of a vertex
containing a given vertex, highest/lowest edge among k edges incident on a path,
using k processors per query, where k is the size of the corresponding component.

4.9.3 Implementation of D
Given the DFS tree T of the graph, we build the data structures described in Theorem 4.3
and Theorem 4.5 on it. Now, given the post order traversal of T , we assign each vertex with
a value equal to its rank in the post order traversal. Now, for each vertex v we perform
a parallel merge sort on the set of neighbors of the vertex using degree(v) processors,
requiring overall m processors. Thus, each vertex stores its neighbors

(
say N(v)

)
in the

increasing order of their post order indexes. Due to absence of cross edges in a DFS tree
T , the neighbors of every vertex would be sorted in the order they appear on the path
from root(T ) to the vertex. Thus, the data structure D can be built in O(log n) time (for
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sorting) using m processors on an EREW PRAM. This allows us to answer the following
queries efficiently.

1. Query
(
w, path(x, y)

)
: among all the edges from w that are incident on path(x, y)

in G, return an edge that is incident nearest to x on path(x, y).

2. Query
(
T (w), path(x, y)

)
: among all the edges from T (w) that are incident on

path(x, y) in G, return an edge that is incident nearest to x on path(x, y).

3. Query
(
path(v, w), path(x, y)

)
: among all the edges from path(v, w) that are incident

on path(x, y) in G, return an edge that is incident nearest to x on path(x, y).

We now describe how to perform a set of independent queries to D (recall definition of
independent queries in Section 4.3) in O(log n) time on an EREW PRAM as follows. We
assign one processor for each vertex u ∈ {w}, T (w) or path(x, y) (depending on the type
of query) to perform the following in parallel. For the vertex u, we would first perform
a binary search for the range given by the post order indexes of x and y on N(u) to
find the required edge. However, since all vertices of path(x, y) may not be ancestors
of u, N(u) may include some edges not on path(x, y) too in the given range, corrupting
the search results. Hence, the search would be performed on a modified range described
as follows. Firstly, assuming x is an ancestor of y, if LCA(u, x) is not equal to x the
search would not be performed (as x is not an ancestor of u). Otherwise, the search is
performed on the range given by post order indexes of x and LCA(u, y). However, in
case of Query

(
path(v, w), path(x, y)

)
we surely know that no vertex of path(v, w) is a

descendant of path(x, y) (recall its definition in Section 4.3). Thus, we reverse the roles of
the paths taking maximum or minimum accordingly using |path(x, y)| processors. Thus,
each of these queries would require O(log n) time on an EREW PRAM. Now, given a set
of independent queries on D, each processor shall be using different N(u) for finding the
corresponding edge. Hence, all the queries can be performed simultaneously on different
memory cells abiding the constraints of an EREW PRAM. Now, the highest or lowest edge
among all the edges returned by different processors can be found by taking the maximum
or minimum in O(log n) time on an EREW PRAM (Theorem 4.6). Thus, we have the
following theorem.

Theorem 4.8. The DFS tree T of a graph can be preprocessed to build a data structure D
of size O(m) in O(log n) time using m processors such that a set of independent queries of
types Query

(
w, path(x, y)

)
, Query

(
T (w), path(x, y)

)
and Query

(
path(v, w), path(x, y)

)
on T can be answered simultaneously in O(log n) time using 1, |T (w)| and |path(x, y)|
processors respectively on an EREW PRAM.

Extension to handle multiple updates

Consider a sequence of k updates on graph, let T ∗i represent the DFS tree computed by our
algorithm after i updates in the graph. We also denote the corresponding data structure
D built on T ∗i as Di. We now show that any query of the type Query

(
w, path(x, y)

)
,

Query
(
T ∗i (w), path(x, y)

)
and Query

(
path(v, w), path(x, y)

)
on Di, can be performed on

D0 if path(x, y) is an ancestor-descendant path in T . Recall that each such query is
performed by querying the N(x) corresponding to each descendant vertex x separately,
whose results are later combined. Thus, even if T ∗i (w) is not a subtree of T or path(v, w)
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is not an ancestor-descendant path of T , it does not affect the processing of the query, as
long as path(x, y) is an ancestor-descendant path of T .

The only extra procedure to be performed to answer such queries correctly using D0, is
to update the N(x) for any vertex x whose adjacency list is affected by the graph update.
For insertion/deletion of a vertex x, we simply add/delete the corresponding list N(x).
For insertion of vertex we additionally sort it according to post order traversal of T using
n processors in O(log n) time. Note that we do not need to update the N(y) for each
neighbor y of x, as the query path being an ancestor-descendant path of both T ∗i and T
would not contain x. However, on insertion of a vertex x, such a query can be made with
the entire path representing only x. Hence, we assign the highest post order number to
x, and add it to the end of N(y) for each neighbor y of x. This can be done using n
processors in O(1) time on an EREW PRAM. Insertion/deletion of single edges can be
taken care of individually by each search procedure taking O(log n + k) time to perform
search after k updates. Thus, we have the following theorem.

Theorem 4.9. The data structure D built on the DFS tree T of a graph G, can be used to
perform a set of independent queries on Dk of types Query

(
w, path(x, y)

)
, Query

(
T ∗k (w), path(x, y)

)
and Query

(
path(v, w), path(x, y)

)
, in O(log n + k) time using 1, |T ∗k (w)| and |path(x, y)|

processors respectively on an EREW PRAM, if path(x, y) is an ancestor-descendant path
of T .

4.9.4 Analysis

Using these data structures we can now analyze the time required by the reduction al-
gorithm on an EREW PRAM. Since the queries on D and LCA queries on T can be
answered in O(log n) time using n processors as described above, Theorem 4.1 reduces to
the following theorem.

Theorem 4.10. Given the DFS tree T of a graph and the data structure D built on it,
any update on the graph can be reduced to independently rerooting disjoint subtrees of the
DFS tree using n processors in O(log n) time on an EREW PRAM.

Implementation details

Using Theorem 3.3 and Theorem 4.7, we can show that all operations required for each
stage of our rerooting algorithm to reroot a subtree τ , can be performed in O(log n)
time using |τ | processors. Both root(τc) and vertex vH required by our algorithm while
processing a component c can be computed in parallel by comparing the size of each
subtree using |c| processors. Adding a path p to T ∗ essentially involves marking the
corresponding edges as tree edges, which can be performed by informing the vertices on p.
All the other operations of the rerooting algorithm (refer to pseudo code in Section 4.8)
are trivially reducible to the operations described in Theorem 4.7. Since our rerooting
algorithm requires log n phases each having log n stages, we get the following theorem for
rerooting disjoint subtrees using our rerooting algorithm.

Theorem 4.11. Given an undirected graph with the data structure D built on its DFS
tree, independently rerooting disjoint subtrees of the DFS tree can be performed in O(log3 n)
time using n processors on an EREW PRAM.
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Using Theorem 3.3, Theorem 4.10 and Theorem 3.1, we can prove our main result
described as follows.

Theorem 4.12. Given an undirected graph and its DFS tree, it can be preprocessed to
build a data structure of size O(m) in O(log n) time using m processors on an EREW
PRAM such that for any update in the graph, a DFS tree of the updated graph can be
computed in O(log3 n) time using n processors on an EREW PRAM.

Now, in order to prove our result for Parallel Fully Dynamic DFS and Parallel Fault
Tolerant DFS we need to first build the DFS tree of the original graph from scratch
during the preprocessing stage. This can be done using the static DFS algorithm [Tar72]
or any advanced deterministic parallel algorithm [AA88, GPV93]. Thus, for processing any
update we always have the current DFS tree built (either the original DFS tree built during
preprocessing or the updated DFS tree built by our algorithm for the previous update).
We can thus build the data structure D using Theorem 4.8 reducing Theorem 4.12 to the
following theorem.

Theorem 4.13 (Parallel Fully Dynamic DFS). Given an undirected graph, we can main-
tain its DFS tree under any arbitrary online sequence of vertex or edge updates in O(log3 n)
time per update using m processors on an EREW PRAM.

However, if we limit the number of processors to n, our fully dynamic algorithm cannot
update the DFS tree in Õ(1) time, only because updating D in Õ(1) time requires O(m)
processors (see Theorem 4.8). Thus, we build the data structure D using Theorem 4.8
during preprocessing itself, and attempt to use it to handle multiple updates.

Parallel fault tolerant DFS with multiple updates

Consider a sequence of k updates on graph, let T ∗i represent the DFS tree computed by our
algorithm after i updates in the graph. We also denote the corresponding data structure
D built on T ∗i as Di. Now, consider any stage of our algorithm while building the DFS tree
T ∗i . For each component in parallel, O(1) ancestor-descendant paths of T ∗i−1 are added to
T ∗i . Thus, any ancestor-descendant path p of T ∗i , is built by adding O(log2 n) such paths
of T ∗i−1, corresponding to O(log n) phases each having O(log n) stages. Hence, p is union
of O(log2 n) ancestor-descendant paths of T ∗i−1, say p1, ..., pk.

Using this reduction, it can be shown that a set of independent queries on path p in
Di, can be reduced to O(log2 n) sets of independent queries on corresponding O(log2 n)
paths p1, ..., pk on Di−1 (see Section 4.9.3). Again, each of these paths p1, ..., pk, being
an ancestor-descendant path of T ∗i−1, is a union of O(log2 n) ancestor-descendant paths
of T ∗i−2, and so on. Thus, any set of independent queries on Di can be performed by

O(log2(i−1) n) sets of independent queries on D, which takes O(log2i−1 n) time on an
EREW PRAM using n processors when k ≤ log n (see Theorem 4.8 and Section 4.9.3).
The other data structures on T ∗i−1 can be built in O(log n) time using n processors (see
Theorem 4.7). This allows our algorithm to build the DFS tree T ∗i from T ∗i−1 using D in

O(log2i+1 n) time on an EREW PRAM using n processors (see Theorem 4.2). Thus, for a
given set of k updates we build each T ∗i one by one using T ∗i−1 and D, to get the following
theorem.
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Theorem 4.14 (Parallel Fault Tolerant DFS). Given an undirected graph, it can be pre-
processed to build a data structure of size O(m), such that for any set of k (≤ log n)
updates in the graph, a DFS tree of the updated graph can be computed in O(k log2k+1 n)
time using n processors on an EREW PRAM.

Remark. For k = 1, our algorithm also gives an O(n log3 n) time sequential algorithm
for updating a DFS tree after a single update in the graph, achieving similar bounds as in
Section 3.3. However, this algorithm uses much simpler data structure D at the cost of a
more complex algorithm.

4.10 Applications in other models of computation

We now briefly describe how our algorithm can be easily adopted to the semi-streaming
model and distributed model.

4.10.1 Semi-Streaming Setting

Our algorithm only stores the current DFS tree T and the partially built DFS tree T ∗

taking O(n) space. Thus, all operations on T can be performed without any passes over
the input graph. A set of independent queries on D is evaluated by performing a single
pass over all the edges of the input graph using O(n) space. This is because each set
has O(n) queries (see Theorem 4.1 and Theorem 4.2) and we are required to store only
one edge per query (partial solution based on edges visited by the pass). Note that here
the role of D is performed by a pass over the input graph. Hence, the algorithm is first
executed for all the components in turn until each instance of the algorithm queries the
data structure D. This is followed by a pass on the input graph to answer these queries
and so on. Since each stage requires O(1) steps (and hence O(1) sequential queries on D),
it can be performed using O(1) passes. Thus, our algorithm requires O(log2 n) passes to
update the DFS tree after a graph update by executing logn stages for each of the log n
phases. Thus, we get the following theorem.

Theorem 4.15. Given any arbitrary online sequence of vertex or edge updates, we can
maintain a DFS tree of an undirected graph using O(log2 n) passes over the input graph
per update by a semi-streaming algorithm using O(n) space.

4.10.2 Distributed Setting

Our algorithm stores only the current DFS tree T and the partially built DFS tree T ∗

at each node. Thus, the operations on T are performed locally at each node and the
distributed computation is only used to evaluate the queries on D. Using Theorem 4.1 and
Theorem 4.2, each update is performed by O(log2 n) sequential sets of O(n) independent
queries on D. Evaluation of a set of O(n) independent queries on D can be essentially
reduced to propagation of O(n) words (partial solutions of n queries) throughout the
network. Using the standard technique of pipelined broadcasts and convergecasts [Pel00],
we can propagate these O(n) words in O(D) rounds using messages of size O(n/D), where
D is the diameter of the graph. We now describe how our algorithm can be efficiently
implemented in the distributed model.
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Implementation details

In the synchronous CONGEST (B) model a processor is present at every node of the graph
and communication links are restricted to the edges of the graph. The communication oc-
curs in synchronous rounds, where each nodes can send a message of O(B) words along
each communication link. Our model includes a preprocessing stage followed by an alter-
nating sequence of update and recovery stages. The graph is updated in the update stage,
after which the recovery stage starts in which the algorithm updates the DFS tree of the
graph. The model allows the algorithm to complete updating the DFS tree (completing
the recovery stage) before the next update is applied to the graph (update stage). Similar
model was earlier used by Henzinger et al. [HKN13]. We use an additional constraint of
a space restriction of O(n) size at each node. In the absence of this restriction, the whole
graph can be stored at each node, where an algorithm can trivially propagate the update
to each node and the updated solution can be computed locally. Finally, we also allow
the deletion updates to be abrupt, i.e., the deleted link/node becomes unavailable for use
instantly after the update.

Each node stores the current DFS tree T and the partially built DFS tree T ∗. Thus,
all the operations on T can be performed locally at each node, where the distributed
computation is used only to evaluate the queries on D. Also, using Theorem 4.1 and The-
orem 4.2 each update reduces to O(log2 n) sequential sets of O(n) independent queries on
D. Thus, we shall only focus on how to evaluate such queries efficiently in the distributed
environment.

Optimality of message size

We first prove that any distributed algorithm maintaining the DFS tree at each node
requires a message size of Ω(n/D) to update the DFS tree in O(D) rounds. Consider
the insertion of a vertex, such that the final DFS tree uses O(n) of the newly inserted
edges. This is clearly possible if the current DFS tree has O(n) branches, where leaf
of each branch is connected to the inserted vertex. Thus, the information of at least
these O(n) new edges needs to be propagated throughout the network by any algorithm
maintaining DFS tree at each node. Now, broadcasting m messages on a network with
diameter D requires Ω(m + D) rounds [Pel00]. In order to limit the number of rounds
to O(D), we can send only O(D) messages. Thus, any algorithm sending O(n) words of
information using O(D) messages would require a message size of Ω(n/D). We thus use
the CONGEST (n/D) model for our distributed algorithm.

Evaluation of queries on D

Now, each node only stores the adjacency list of the corresponding vertex in addition to
T and T ∗ described above. Recall that a query on D is merely highest/lowest edge among
a set of eligible edges. Hence, it can be easily evaluated for the whole graph by combining
the partial solutions of the same query performed on each adjacency list locally at the
node. Thus, the focus is to broadcast the partial solution from each node to reach the
whole graph, where each node can then combine them locally to get the solution to the
query. Moreover, these partial solutions can also be combined during broadcasting itself
to avoid sending too many messages as described below.
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Performing broadcasts efficiently

Broadcasts can be performed efficiently by using a spanning tree of the graph. To ensure
efficiency of rounds we use a BFS tree as follows. After every update, any vertex (say
vertex with the smallest index) starts building a BFS tree B rooted at it. The depth
of B is O(D) and it can be built in O(D) rounds using O(m) messages [Pel00]. All the
broadcasts are now performed only on the tree edges of B as follows. We first describe it
for a single query then extend it to handle O(n) queries. Note that it is a trivial extension
of the standard pipelined broadcasts and convergecasts algorithm [Pel00]. Each node waits
for partial solutions to the query from all its children in B, updates its solution and sends
it to its parent. On receiving the partial solutions from all the children, the root computes
the final solution and sends it back to all nodes along the tree edges of B. Clearly, this
process requires O(D) rounds and O(n) messages each of size O(1) (partial solution of a
query is a single edge). In order to perform O(n) independent queries efficiently in parallel,
on each edge we send D messages of size O(n/D) in a pipelined manner (one after the
other) to achieve the broadcast in O(D) time (see pipelined broadcast in [Pel00]). The
total number of messages sent would be O(nD). Since the rerooting algorithm requires
O(log2 n) sequential sets of O(n) queries (see Theorem 4.2), we get the following theorem.

Theorem 4.16. Given any arbitrary online sequence of vertex or edge updates, we can
maintain a DFS tree in O(D log2 n) rounds per update in a distributed setting using
O(nD log2 n + m) messages each of size O(n/D) and O(n) local space on each proces-
sor, where D is diameter of the graph.

Remark. Our initial assumption of adding a pseudo root (see Appendix A) connected to
every vertex of the graph is no longer valid in the distributed system. This is because both
the processors and communication links are fixed in our model. Thus, we need to maintain
a DFS forest instead of a DFS tree requiring to handle the cases when some component is
partitioned into several components and when two or more components merge as a result
of a graph update. The following section describes how this can be achieved in the same
bounds described above.

Maintaining a DFS forest

After every update in the graph, a neighboring vertex of the affected link/node shall broad-
cast the information about the update to all the vertices in the component. However, in
order to limit the number of messages transmitted, exactly one vertex from each compo-
nent so formed needs to initiate the broadcast. We shall shortly describe how to choose
this vertex. The chosen vertex also chooses the new root for the DFS tree of the compo-
nent (say the node with the smallest index). The new root then makes the corresponding
BFS tree as described above to perform efficient broadcasts. In case two or more compo-
nents are merged due to the update, the DFS tree of each component computed earlier
is broadcasted to the entire component by the original roots of two components. Since,
the size of broadcast (DFS tree) is O(n), it can be performed under the same bounds as
described above.

We now describe how to choose the broadcast vertex efficiently. In case of vertex/edge
insertion, we choose the inserted vertex or endpoint of the inserted edge with smaller index
respectively. In case of vertex/edge deletion, for each component so formed, we choose
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the neighbor of deleted node/link in T that has the smallest index. For this each neighbor
of the deleted node/link needs to know the resultant components formed as a result of
the deletion. This can be easily computed locally if each node also stores the articulation
points/bridges of the current DFS tree T . Hence, after computing the DFS tree, each
node computes the articulation points/bridges of the DFS tree according of the subgraph
induced by the edges of T and the adjacency list stored at the node. The vertices/edges
present in all the sets of articulation points/bridges computed at different nodes will be
the articulation points/bridges of the whole graph. Again, this requires each vertex to
send O(n) words of information where the partial solutions can be combined. Thus, it can
be performed similar to the queries on D using the same bounds.

4.11 Discussion

Our parallel dynamic algorithms take nearly optimal time on an EREW PRAM. However,
the work efficiency of our fully dynamic algorithm is Õ(m) whereas that of the best se-
quential algorithm (see Chapter 3) is Õ(

√
mn). Even though our fault tolerant algorithm

is nearly work optimal, it is only for constant number of updates. The primary reason
behind these limitations is the difficulty in updating the data structure D using n pro-
cessors. Our fault tolerant algorithm avoids this problem, by naively using the original D
to simulate the queries of updated D. It would be interesting to see if an algorithm can
process significantly more updates using only n processors in Õ(1) time (similar extension
was performed in Chapter 3 for the sequential setting). This may also lead to a fully
dynamic algorithm that is nearly time optimal with better work efficiency.

Further, our distributed algorithm works only on a substantially restricted synchronous
CONGEST (n/D) model. Moreover, the number of messages passed during an update in
the distributed algorithm is O(nD log2 n + m), which is way worse than the number of
messages required to compute a DFS from scratch when the message size is relaxed, i.e.,
O(n). It would be interesting to see if dynamic DFS can be maintained in near optimal
rounds in more stronger CONGEST or LOCAL models.





Chapter 5

Empirical analysis of Incremental
DFS algorithms

5.1 Introduction

In the past chapters, we have seen several algorithms that maintain a DFS tree in the dy-
namic setting. However, not much is known about their empirical performance and hence
their applicability in practice. For various algorithms, the average-case time complexity
(average performance on random graphs) have been proven to be much less than their
worst case complexity. Another equally important aspect is the empirical performance of
an algorithm on real world graphs. After all, the ideal goal is to design an algorithm hav-
ing a theoretical guarantee of efficiency in the worst case as well as superior performance
on real graphs. Often such an experimental analysis also leads to the design of simpler
algorithms that are extremely efficient in real world applications. Thus, such an analysis
bridges the gap between theory and practice.

In this chapter, we carry out extensive experimental and theoretical evaluation of the
existing algorithms for maintaining incremental DFS in random graphs and real world
graphs. Our study focuses on only incremental DFS algorithms for two reasons. Firstly,
most dynamic graphs in real world are dominated by insertion updates [Kun16, LK14,
DH14]. Secondly, in every other dynamic setting, only a single dynamic DFS algorithm is
known, making a comparative study impractical.

For undirected graphs, there are two prominent algorithms, namely, ADFS1 and
ADFS2, presented in Chapter 2. Chapter 3 also presents an incremental algorithm,
namely WDFS, having better worst case guarantees on the update time. For directed
acyclic graphs, the only non-trivial algorithm, namely FDFS, was presented by Franciosa
et al. [FGN97]. However, even after 20 years of this result, there does not exist any non-
trivial incremental DFS algorithm for directed graphs with o(m2) worst case bound. In
the following section we briefly describe various algorithms considered in our evaluation.

5.2 Existing algorithms

In this section we give a brief overview of the results on maintaining incremental DFS
(see Table 5.1 for comparison). The key ideas used in these algorithms are crucial to
understand their behavior on random graphs.
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Static DFS algorithm (SDFS)

The static algorithm for computing the DFS tree of a graph was given by Tarjan [Tar72].
In the incremental version of the same, SDFS essentially computes the whole DFS tree
from scratch after every edge insertion.

Static DFS algorithm with interrupt (SDFS-Int)

Static DFS tree was shown to have much better performance for a random graph by
Kapidakis [Kap90]. Only difference from SDFS is that the algorithm terminates as soon
as all the vertices of the graph are marked visited. Again, the algorithm recomputes the
DFS tree from scratch after every edge insertion though requiring only O(n log n) time for
random graphs.

Incremental DFS for DAG/directed graph (FDFS)

FDFS [FGN97] maintains the post-order (or DFN) numbering] of vertices in the DFS tree,
which is used to rebuild the DFS tree efficiently. On insertion of an edge (x, y) in the graph,
it first checks whether (x, y) is an anti-cross edge by verifying if DFN[x] <DFN[y]. In case
(x, y) is not an anti-cross edge, it simply updates the graph and terminates. Otherwise, it
performs a partial DFS on the vertices reachable from y in the subgraph induced by the
vertices with DFN number between DFN[x] and DFN[y]. In case of DAGs, this condition
essentially represents a candidate set of vertices that lie in the subtrees hanging on the
right of path(LCA(x, y), x) or on the left of path(LCA(x, y), y). FDFS thus removes these
reachable vertices from the corresponding subtrees and computes their DFS tree rooted at
y to be hanged from the edge (x, y). The DFN number of all the vertices in candidate set is
then updated to perform the next insertion efficiently. The algorithm can also be trivially
extended to directed graphs. Here, the candidate set includes the subtrees hanging on the
right of path(LCA(x, y), x) until the entire subtree containing y (say T ′). Note that for
DAGs instead of entire T ′, just the subtrees of T ′ hanging on the left of path(LCA(x, y), y)
are considered. However, FDFS in directed graphs is not known to have any bounds better
than O(m2).

Incremental DFS for undirected graphs (ADFS)

In Chapter 2, we presented two algorithms (referred as ADFS1 and ADFS2) for main-
taining incremental DFS in undirected graphs. ADFS (refers to both ADFS1 and ADFS2)
maintains a data structure that answers LCA and level ancestor queries. Recall that on
insertion of an edge (x, y) in the graph, ADFS first verifies whether (x, y) is a cross edge.
In case (x, y) is a back edge, it simply updates the graph and terminates. Otherwise, it
rebuilds the DFS tree using a simple procedure that may convert several back edges of the
tree to cross edges. It then collects these cross edges and iteratively inserts them back to
the graph using the same procedure. The only difference between ADFS1 and ADFS2 is
the order in which these collected cross edges are processed. ADFS1 processes these edges
arbitrarily, whereas ADFS2 processes the cross edge with the highest endpoint first. For
this purpose ADFS2 uses a non-trivial data structure, which shall be referred as D.
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Incremental DFS with worst case guarantee (WDFS)

In Chapter 3, we presented an incremental DFS algorithm giving a worst case guarantee of
O(n log3 n) on the update time. The algorithm builds a data structure using the current
DFS tree, which is used to efficiently rebuild the DFS tree after an edge update. Recall
that building this data structure requires O(m) time and hence the same data structure
is used to handle multiple updates (≈ Õ(m/n)). The data structure is then rebuilt over a
period of updates using a technique called overlapped periodic rebuilding. Now, the edges
processed for updating a DFS tree depends on the number of edges inserted since the
data structure was last updated. Thus, whenever the data structure is updated, there is
a sharp fall in the number of edges processed per update resulting in a saw like structure
on the plot of number of edges processed (or time taken) per update.

Algorithm Graph Time per update Total time

SDFS [Tar72] Any O(m) O(m2)

SDFS-Int [Kap90] Random O(n log n) expected O(mn log n) expected

FDFS [FGN97] DAG O(n) amortized O(mn)

ADFS1 (Ch. 2) Undirected O(n3/2/
√
m) amortized O(n3/2

√
m)

ADFS2 (Ch. 2) Undirected O(n2/m) amortized O(n2)

WDFS (Ch. 3) Undirected O(n log3 n) O(mn log3 n)

Table 5.1: Comparison of different algorithms for maintaining incremental DFS of a graph.

5.3 Preliminary

5.3.1 Random Graphs

The two prominent models for studying random graphs areG(n,m) [Bol84] andG(n, p) [ER59,
ER60]. A random graph G(n,m) consists of the first m edges of a uniformly random per-
mutation of all possible edges in a graph with n vertices. In a random graph G(n, p), every
edge is present in the graph with a probability of p independent of other edges. We now
state the following classical result for random graphs that shall be used in our analysis.

Theorem 5.1. [FK15] Graph G(n, p) with p = 1
n(log n+ c) is connected with probability

at least 1− e−c for any constant c > 0.

5.3.2 Experimental Setting

In our experimental study on random graphs, the performance of different algorithms is
analyzed in terms of the number of edges processed, instead of the time taken. This is
because the total time taken by the evaluated algorithms is dominated by the time taken
to process the graph edges. The following short discussion shall throw a better light at
our choice of edges processed for analyzing the algorithms.

Most of the algorithms analyzed in this chapter require dynamic maintenance of a
data structure for answering LCA and LA (level ancestor) queries. The LCA/LA data
structures used by ADFS1/ADFS2 (Ch. 2) takes O(1) amortized time to maintain the
data structure for every vertex whose ancestor is changed in the DFS tree. However, it
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Figure 5.1: Comparison of total time taken and time taken by LCA/LA data structure by the
most efficient algorithms for insertion of m =

(
n
2

)
edges for different values of n.

is quite difficult to implement and seems to be more of theoretical interest. Thus, we
use a far simpler data structure whose maintenance require O(log n) time for every vertex
whose ancestor is changed in the DFS tree. Figure 5.1 shows that the time taken by these
data structures is insignificant in comparison to the total time taken by the algorithm.
Analyzing the number of edges processed instead of time taken allows us to ignore the time
taken for maintaining and querying this LCA/LA data structure. Moreover, the perfor-
mance of ADFS and FDFS is directly proportional to the number of edges processed along
with some vertex updates (updating DFN numbers for FDFS and LCA/LA structure for
ADFS). However, the tasks related to vertex updates can be performed in Õ(1) time using
dynamic trees [Tar97]. Thus, the actual performance of these algorithms is truly depicted
by the number of edges processed, justifying our evaluation of relative performance of
different algorithms by comparing the number of edges processed.

Further, comparing the number of edges processed provides a deeper insight in the
performance of the algorithm (see Section 5.4). Also, it makes this study independent of
the computing platform making it easier to reproduce and verify. For random graphs, each
experiment is averaged over several test cases to get the expected behavior. For the sake
of completeness, the corresponding experiments are also replicated measuring the time
taken by different algorithms in Section 5.9. However, for real graphs the performance is
evaluated by comparing the time taken and not the edges processed. This is to ensure an
exact evaluation of the relative performance of different algorithms. The source code of
our project is available on Github under the BSD 2-clause license1.

1https://github.com/shahbazk/IncDFS-Experimental
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5.3.3 Datasets

In our experiments we considered the following types of datasets.

• Random Graphs: The initial graph is the star graph, formed by adding an edge
from the pseudo root s to each vertex. The update sequence is generated based on
Erdős Rényi G(n,m) model by choosing the first m edges of a random permutation
of all the edges in the graph. For the case of DAGs, the update sequence is generated
using an extension of G(n,m) model for DAGs [CMP+10].

• Real graphs: We use a number of publicly available datasets [Kun16, LK14, DH14]
derived from the real world. These include graphs related to Internet topology, col-
laboration networks, online communication, friendship networks and other interac-
tions (for details refer to Section 5.7.3).

5.4 Experiments on Random Undirected graphs
We now compare the empirical performance of the existing algorithms for incrementally
maintaining a DFS tree of a random undirected graph described in Section 5.2.

Figure 5.2: Total number of edges processed by existing algorithms for insertion of m =
(
n
2

)
edges

for different values of n. (a) Normal scale. (b) Logarithmic scale. See Figure 5.13 for corresponding
time plot.

We first compare the total number of edges processed by the existing algorithms for
insertion of m =

(
n
2

)
edges, as a function of number of vertices. Figure 5.2 (a) and Figure

5.2 (b) shows this comparison in normal and logarithmic scale respectively. In Figure
5.2 (b), since the total number of edges is presented in logarithmic scale, the slope x of
a line depicts the growth of the total number of edges as O(nx). The performance of
SDFS, SDFS-Int and WDFS resemble their asymptotic bounds described in Table 5.1.
For small values of n, WDFS performs worse than SDFS and SDFS-Int because of large
difference between the constant terms in their asymptotic bounds, which is evident from
their y-intercepts. However, the effect of constant term diminishes as the value of n is
increased. The most surprising aspect of this experiment is the exceptional performance
of ADFS1 and ADFS2. Both ADFS1 and ADFS2 perform much faster than the other
algorithms. Furthermore, ADFS1 and ADFS2 perform equally well despite the difference
in their asymptotic complexity (see Table 5.1).
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Inference I1: ADFS1 and ADFS2 perform equally well and much faster than other
algorithms.

Remark: Inference I1 is surprising because the complexity of ADFS1 and ADFS2 has
been shown (see Chapter 2) to be O(n3/2

√
m) and O(n2) respectively. Moreover, we

present a sequence of m edge insertions where ADFS1 takes Ω(n3/2
√
m) time in Section

2.5.3, proving the tightness of its analysis. However, ADFS2 takes slightly more time than
ADFS1, for maintaining the data structure D (see Figure 5.13).

Figure 5.3: For n = 1000 and up to n
√
n edge insertions the plot shows (a) Total number of

edges processed, (b) Number of edges processed per edge insertion, by the existing algorithms. See
Figure 5.14 for corresponding time plot.

We now compare the total number of edges processed by the existing algorithms as a
function of number of inserted edges in Figure 5.3 (a). The slopes of SDFS-Int, WDFS
and ADFS represent the number of edges processed per edge insertion. Here again, the
performance of SDFS, SDFS-Int and WDFS resembles with their worst case values (see
Table 5.1). Similarly, both ADFS1 and ADFS2 perform equally well as noted in the pre-
vious experiment. When the graph is sparse (m << n log3 n), WDFS performs worse
than SDFS because of high cost of update per edge insertion (see Table 5.1). Further,
as expected the plots of SDFS-Int and WDFS grow linearly in m. This is because their
update time per insertion is independent of m. However, the plots of ADFS1 and ADFS2
are surprising once again, because they become almost linear as the graph becomes denser.
In fact, once the graph is no longer sparse, each of them processes ≈ 2 edges per edge
insertion to maintain the DFS tree. This improvement in the efficiency of ADFS1 and
ADFS2 for increasing value of m is counter-intuitive since more edges may be processed
to rebuild the DFS tree as the graph becomes denser.

Inference I2: ADFS1/ADFS2 processes ≈ 2 edges per insertion after the insertion of
O(n) edges.
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Finally, to investigate the exceptional behavior of ADFS1 and ADFS2, we compare
the number of edges processed per edge insertion by the existing algorithms as a function
of number of inserted edges in Figure 5.3 (b). Again, the expected behavior of SDFS,
SDFS-Int and WDFS matches with their worst case bounds described in Table 5.1. The
plot of WDFS shows the saw like structure owing to overlapped periodic rebuilding of the
data structure used by the algorithm (see Section 5.2). Finally, the most surprising result
of the experiment is the plot of ADFS1 and ADFS2 shown in the zoomed component of
the plot. The number of edges processed per edge insertion sharply increases to roughly 5
(for n = 1000) when m reaches O(n) followed by a sudden fall to reach 1 asymptotically.
Note that the inserted edge is also counted among the processed edges, hence essentially
the number of edges processed to update the DFS tree asymptotically reaches zero as the
graph becomes dense. This particular behavior is responsible for the exceptional perfor-
mance of ADFS1 and ADFS2.

Inference I3: Number of edges processed by ADFS1/ADFS2 for updating the DFS tree
asymptotically reaches zero as the graph becomes denser.

To understand the exceptional behavior of ADFS1 and ADFS2 for random graphs
inferred in I1, I2 and I3, we shall now investigate the structure of a DFS tree for random
graphs.

5.5 Structure of a DFS tree: The broomstick

We know that SDFS, SDFS-Int and WDFS invariably rebuild the entire DFS tree on in-
sertion of every edge. We thus state the first property of ADFS that differentiates it from
other existing algorithms.

Property P1: ADFS rebuilds the DFS tree only on insertion of a cross edge.

Let T be any DFS tree of the random graph G(n,m). Let pc denote the probability that
the next randomly inserted edge is a cross edge in T . We first perform an experimental
study to determine the behavior of pc as the number of edges in the graph increases. Figure
5.4 (a) shows this variation of pc for different values of n. The value pc starts decreasing
sharply once the graph has Θ(n) edges. Eventually, pc asymptotically approaches 0 as
the graph becomes denser. Surely ADFS crucially exploits this behavior of pc in random
graphs (using Property P1). In order to understand the reason behind this behavior of pc,
we study the structure of a DFS tree of a random graph.

5.5.1 Broomstick Structure

The structure of a DFS tree can be described as that of a broomstick as follows. From the
root of the DFS tree there exists a downward path on which there is no branching, i.e.,
every vertex has exactly one child. We refer to this path as the stick of the broomstick
structure. The remaining part of the DFS tree (except the stick) is called the bristles of
the broomstick.
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Figure 5.4: The variation of (a) pc : Probability of next inserted edge being a cross edge, and (b)
ls : Length of broomstick, with graph density. Different lines denote different number of vertices,
starting at different points.

Let ls denote the length of the stick in the broomstick structure of the DFS tree.
We now study the variation of ls as the edges are inserted in the graph. Figure 5.4 (b)
shows this variation of ls for different values of n. Notice that the stick appears after the
insertion of roughly n log n edges (see the zoomed part of Figure 5.4 (b)). After that ls
increases rapidly to reach almost 90% of its height within just ≈ 3n log n edges, followed
by a slow growth asymptotically approaching its maximum height only near O(n2) edges.
Since any newly inserted edge with at least one endpoint on the stick necessarily becomes
a back edge, the sharp decrease in pc can be attributed to the sharp increase in ls. We
now theoretically study the reason behind the behaviour of ls using properties of random
graphs, proving explicit bounds for ls.

5.5.2 Length of the stick

The appearance of broomstick after insertion of n log n edges as shown in Figure 5.4 (b)
can be explained by the connectivity threshold for random graphs (refer to Theorem 5.1).
Until the graph becomes connected (till Θ(n log n) edges), each component hangs as a
separate subtree from the pseudo root s, limiting the value of ls to 0. To analyze the
length of ls for m = Ω(n log n) edges, we first prove a succinct bound on the probability
of existence of a long path without branching during a DFS traversal in G(n, p) in the
following lemma.

Lemma 5.5.1. Given a random graph G(n, p) with p = (log n0 + c)/n0, for any integer
n0 ≤ n and c ≥ 1, there exists a path without branching of length at least n − n0 in the
DFS tree of G with probability at least 1− 2e−c.

Proof. Consider any arbitrary vertex u = x1, the DFS traversal starting from x1 continues
along a path without branching so long as the currently visited vertex has at least one
unvisited neighbor. Let xj denotes the jth vertex visited during the DFS on G(n, p)
starting from x1. The probability that xj has at least one neighbor in the unvisited graph
is 1 − (1 − p)n−j . We shall now calculate the probability that 〈x1, . . . , xn−n0〉 is indeed
a path. Let v = xn−n0 . We partition this sequence from v towards u into contiguous
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Figure 5.5: Estimating the length of ’stick’ in the DFS tree.

subsequences such that the first subsequence has length n0 and (i+ 1)th subsequence has
length 2in0 (see Figure 5.5). The probability of occurrence of a path corresponding to the
ith subsequence is at least(

1−
(

1− logn0+c
n0

)2in0
)2in0

≥
(

1−
(

1
n0ec

)2i)2in0

≥ 1− e−2ic

Hence, the probability that DFS from u traverses a path of length n − n0 is at least

Π
log2 n
i=0

(
1− 1

t2i

)
for t = ec. The value of this expression is lower bounded by 1 − 2e−c

using the inequality Π
i=log2 t
i=0

(
1− 1

t2
i

)
> 1− 2

t , that holds for every c ≥ 1 since it implies

t > 2.

In order to establish a tight bound on the length of stick, we need to choose the smallest
value of n0 that satisfies the following condition. Once we have a DFS path of length n−n0
without branching, the subgraph induced by the remaining n0 vertices and the last vertex
of this path v (see Figure 5.5) is still connected. According to Theorem 5.1, for the graph
G(n, p) if the value of p ≥ 1

n0
(log n0 + c), the subgraph on n0 vertices will be connected

with probability at least 1 − e−c. Combining this observation with Lemma 5.5.1 proves
that the probability that DFS tree of G(n, p) is a broomstick with stick length ≥ n − n0
is at least 1 − 3e−c. This probability tends to 1 for any increasing function c(n), where
c(n) ≥ 1 for all n.

Now, a graph property P is called a monotone increasing graph property if G ∈ P
implies that G + e ∈ P, where G + e represents the graph G with an edge e added to it.
Clearly, the length of the stick being at least n − n0 is a monotone increasing property,
as adding more edges can only increase this length. Thus, being a monotone increasing
property, standard arguments2 can be used to show that the above high probability bound
for random graph G(n, p) also holds for the random graph G(n,m) having m = dp ·

(
n
2

)
e.

Finally, using c = log n we get the following corollary.

Corollary 5.5.1. For any random graph G(n,m) with m = 2in log n, its DFS tree will
have bristles of size at most n/2i with probability 1−O(1/n).

To demonstrate the tightness of our analysis we compare the length of the stick as
predicted theoretically (for c = 1) with the length determined experimentally in Figure
5.6, which is shown to match exactly. This phenomenon emphasizes the accuracy and
tightness of our analysis.

5.5.3 Implications of broomstick property

Though the broomstick structure of DFS tree was earlier studied by Sibeyn [Sib01], the
crucial difference in defining the ‘stick’ to be without branches proved to be extremely sig-

2 Refer to proof of Theorem 4.1 in [FK15]
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Figure 5.6: Comparison of experimentally evaluated (E) and theoretically predicted (P) value of
length of the stick in the broomstick structure for different number of vertices.

nificant. To emphasize its significance we now present a few applications of the broomstick
structure of DFS tree, in particular Corollary 5.5.1 to state some interesting results. Note
that the absence of branches on the stick is crucial for all of the following applications.

Lemma 5.5.2. For a uniformly random sequence of edge insertions, the number of edge
insertions with both endpoints in bristles of the DFS tree will be O(n log n)

Proof. We split the sequence of edge insertions into phases and analyze the expected
number of edges inserted in bristles in each phase. In the beginning of first phase there
are n log n edges. In the ith phase, the number of edges in the graph grow from 2i−1n log n
to 2in log n. It follows from Corollary 5.5.1 that ni, the size of bristles in the ith phase will
be at most n/2i−1 with probability 1−O(1/n). Notice that each edge inserted during ith

phase will choose its endpoints randomly uniformly. Therefore, in ith phase the expected
number of edges with both endpoints in bristles are

mi =
n2i
n2
m ≤ 2in log n/22(i−1) = n log n/2i−2

Hence, the expected number of edges inserted with both endpoints in bristles is
∑logn

i=1 mi =
O(n log n).

In order to rebuild the DFS tree after insertion of a cross edge, it is sufficient to re-
build only the bristles of the broomstick, leaving the stick intact (as cross edges cannot
be incident on it). Corollary 5.5.1 describes that the size of bristles decreases rapidly as
the graph becomes denser making it easier to update the DFS tree. This crucial insight
is not exploited by the algorithm SDFS, SDFS-Int or WDFS. We now state the property
of ADFS that exploits this insight implicitly.

Property P2: ADFS modifies only the bristles of the DFS tree keeping the stick intact.

We define an incremental algorithm for maintaining a DFS for random graph to be
bristle-oriented if executing the algorithm A on G is equivalent to executing the algo-
rithm on the subgraph induced by the bristles. Clearly, ADFS is bristle-oriented owing to
property P2 and the fact that it processes only the edges with both endpoints in rerooted
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subtree (refer to Section 5.2). We now state an important result for any bristle-oriented
algorithm (and hence ADFS) as follows.

Lemma 5.5.3. For any bristle-oriented algorithm A if the expected total time taken to
insert the first 2n log n edges of a random graph is O(nα logβ n) (where α > 0 and β ≥ 0),
the expected total time taken to process any sequence of m edge insertions is O(m +
nα logβ n).

Proof. Recall the phases of edge insertions described in the proof of Lemma 5.5.2, where
in the ith phase the number of edges in the graph grow from 2i−1n log n to 2in log n. The
size of bristles at the beginning of ith phase is ni = n/2i−1 w.h.p.. Further, note that the
size of bristles is reduced to half during the first phase, and the same happens in each
subsequent phase w.h.p. (see Corollary 5.5.1). Also, the expected number of edges added
to subgraph represented by the bristles in ith phase is O(ni log ni) (recall the proof of
Lemma 5.5.2). Since A is bristle-oriented, it will process only the subgraph induced by
the bristles of size ni in the ith phase. Thus, if A takes O(nα logβ n) time in first phase,
the time taken by A in the ith phase is O(nαi logβ ni). The second term O(m) comes from
the fact that we would need to process each edge to check whether it lies on the stick.
This can be easily done in O(1) time by marking the vertices on the stick. The total time
taken by A is O(nα logβ n) till the end of the first phase and in all subsequent phases is
given by the following

= m+

logn∑
i=2

cnαi logβ ni ≤
logn∑
i=2

c
( n

2i−1

)α
logβ

( n

2i−1

)

≤ m+ cnα logβ n

logn∑
i=2

1

2(i−1)α
(for β ≥ 0)

≤ m+ c ∗ c′nα logβ n (

logn∑
i=2

1

2(i−1)α
= c′, for α > 0)

Thus, the total time taken by A is O(m+ nα logβ n).

Lemma 5.5.2 and Lemma 5.5.3 immediately implies the similarity of ADFS1 and
ADFS2 as follows.

Equivalence of ADFS1 and ADFS2

On insertion of a cross edge, ADFS performs a path reversal and collects the back edges
that are now converted to cross edges, to be iteratively inserted back into the graph.
ADFS2 differs from ADFS1 only by imposing a restriction on the order in which these
collected edges are processed. However, for sparse graphs (m = O(n)) this restriction
does not change its worst case performance (see Table 5.1). Now, Lemma 5.5.3 states that
the time taken by ADFS to incrementally process any number of edges is of the order
of the time taken to process a sparse graph (with only 2n log n edges). Thus, ADFS1
performs similar to ADFS2 even for dense graphs. Particularly, the time taken by ADFS1

for insertion of any m ≤
(
n
2

)
edges is O(n2

√
log n), i.e., O(n3/2m

1/2
0 ) for m0 = 2n log n.

Thus, we have the following theorem.
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Theorem 5.2. Given a uniformly random sequence of arbitrary length, the expected time
complexity of ADFS1 for maintaining a DFS tree incrementally is O(n2

√
log n).

Remark: The factor of O(
√

log n) in the bounds of ADFS1 and ADFS2 comes from the
limitations of our analysis whereas empirically their performance matches exactly.

5.6 New algorithms for Random Graphs

Inspired by Lemma 5.5.2 and Lemma 5.5.3 we propose the following new algorithms.

Simple variant of SDFS (SDFS2) for random undirected graphs

We propose a bristle-oriented variant of SDFS which satisfies the properties P1 and P2 of
ADFS, i.e., it rebuilds only the bristles of the DFS tree on insertion of only cross edges.
This can be done by marking the vertices in the bristles as unvisited and performing
the DFS traversal from the root of the bristles. Moreover, we also remove the non-tree
edges incident on the stick of the DFS tree. As a result, SDFS2 would process only
the edges in the bristles, making it bristle-oriented. Now, according to Lemma 5.5.3 the
time taken by SDFS2 for insertion of m = 2n log n edges (and hence any m ≤

(
n
2

)
) is

O(m2) = O(n2 log2 n). Thus, we have the following theorem.

Theorem 5.3. Given a random graph G(n,m), the expected time taken by SDFS2 for
maintaining a DFS tree of G incrementally is O(n2 log2 n).

We now compare the performance of the proposed algorithm SDFS2 with the existing
algorithms. Figure 5.7 (a) compares the total number of edges processed for insertion of
m =

(
n
2

)
edges, as a function of number of vertices in the logarithmic scale. As expected

SDFS2 processes Õ(n2) edges similar to ADFS. Figure 5.7 (b) compares the number of
edges processed per edge insertion as a function of number of inserted edges. Again, as
expected SDFS2 performs much better than WDFS and SDFS-Int, performing asymp-
totically equal to ADFS as the performance differs only when the graph is very sparse
(≈ n log n). Interestingly, despite the huge difference in number of edges processed by
SDFS2 and ADFS (see Figure 5.7 (a)), SDFS2 is faster than ADFS2 and equivalent to
ADFS1 in practice (see Figure 5.15 (a)).

Experiments on directed graphs and directed acyclic graphs

The proposed algorithm SDFS2 also works for directed graphs. It is easy to show that
Corollary 5.5.1 also holds for directed graphs (with different constants). Thus, the prop-
erties of broomstick structure and hence the analysis of SDFS2 can also be proved for
directed graphs using similar arguments. The significance of this algorithm is highlighted
by the fact that there does not exists any o(m2) algorithm for maintaining incremental
DFS in general directed graphs. Moreover, FDFS also performs very well and satisfies
the properties P1 and P2 (similar to ADFS in undirected graphs). Note that extension of
FDFS for directed graphs is not known to have complexity o(m2), yet for random directed
graphs we can prove it to be Õ(n2) using Lemma 5.5.3.

We now compare the performance of the proposed algorithm SDFS2 with the existing
algorithms in the directed graphs. Figure 5.8 (a) compares the total number of edges
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Figure 5.7: Comparison of existing and proposed algorithms on undirected graphs: (a) Total
number of edges processed for insertion of m =

(
n
2

)
edges for different values of n in logarithmic

scale (b) Number of edges processed per edge insertion for n = 1000 and up to n
√
n edge insertions.

See Figure 5.15 for corresponding time plot.

Figure 5.8: Comparison of existing and proposed algorithms on directed graphs: (a) Total number
of edges processed for insertion of m =

(
n
2

)
edges for different values of n in logarithmic scale (b)

Number of edges processed per edge insertion for n = 1000 and up to n
√
n edge insertions. See

Figure 5.16 for corresponding time plot.

processed for insertion of m =
(
n
2

)
edges, as a function of number of vertices in the

logarithmic scale. As expected SDFS2 processes Õ(n2) edges similar to FDFS. Figure 5.8
(b) compares the number of edges processed per edge insertion as a function of number of
inserted edges for directed graphs. Thus, the proposed SDFS2 performs much better than
SDFS, and asymptotically equal to FDFS. Again despite the huge difference in number
of edges processed by SDFS2 with respect to FDFS, it is equivalent to FDFS in practice
(see Figure 5.8 (a) and Figure 5.16 (a)).

Finally, we compare the performance of the proposed algorithm SDFS2 with the ex-
isting algorithms in DAGs. Figure 5.9 (a) compares the total number of edges processed
for insertion of m =

(
n
2

)
edges, as a function of number of vertices in the logarithmic

scale. Both SDFS and SDFS-Int perform equally which was not the case when the experi-
ment was performed on undirected (Figure 5.2) or directed graphs (Figure 5.8). Moreover,
SDFS2 processes around Õ(n3) edges which is more than the proven bound of Õ(n2) for
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Figure 5.9: Comparison of existing and proposed algorithms on DAGs: (a) Total number of edges
processed for insertion of m =

(
n
2

)
edges for different values of n in logarithmic scale (b) Number

of edges processed per edge insertion for n = 1000 and up to n
√
n edge insertions. See Figure 5.17

for corresponding time plots.

undirected and directed graphs. However, FDFS processes Õ(n2) edges as expected. Fig-
ure 5.9 (b) compares the number of edges processed per edge insertion as a function of
number of inserted edges. Again, both SDFS and SDFS-Int perform similarly and SDFS2
does not perform asymptotically equal to FDFS even for dense graphs. Notice that the
number of edges processed by SDFS2 does not reach a peak and then asymptotically move
to zero as in case of undirected and general directed graphs. Also, FDFS performs much
better (similar to ADFS for undirected graphs) for DAGs as compared to directed graphs.
Again, despite superior performance on random DAGs, for general DAGs the analysis of
FDFS can be shown to be tight (see Section 5.8.1).

Figure 5.10: Comparison of variation of length of broomstick for 1000 vertices and different values
of m. Different lines denote the variation for different type of graphs. Zoomed portion shows the
start of each line.

To understand the reason behind this poor performance of SDFS-Int and SDFS2 on
DAGs, we compare the variation in length of broomstick for the undirected graphs, general
directed graphs and DAGs in Figure 5.10. The length of the broomstick varies as expected
for undirected and general directed graphs but always remains zero for DAGs. This is be-



107

cause the stick will appear only if the first neighbor of the pseudo root s visited by the
algorithm is the first vertex (say v1) in the topological ordering of the graph. Otherwise
v1 hangs as a separate child of s because it not reachable from any other vertex in the
graph. Since the edges in G(n,m) model are permuted randomly, with high probability
v1 may not be the first vertex to get connected to s. The same argument can be used to
prove branchings at every vertex on the stick. Hence, with high probability there would
be some bristles even on the pseudo root s. This explains why SDFS-Int performs equal
to SDFS as it works same as SDFS until all the vertices are visited. SDFS2 only benefits
from the inserted edges being reverse cross edges which are valid in a DFS tree and hence
avoids rebuilding on every edge insertion. Thus, Corollary 5.5.1 and hence the bounds for
SDFS2 proved in Theorem 5.3 are not valid for the case of DAGs as resulting in perfor-
mance described above. Moreover, the absence of the broomstick phenomenon can also be
proved for other models of random graphs for DAGs [CMP+10] using the same arguments.

Finally, Lemma 5.5.2 also inspires the following interesting applications of SDFS2 in
the semi-streaming environment as follows.

Semi-streaming algorithms

In the streaming model we have two additional constraints. Firstly, the input data can
be accessed only sequentially in the form of a stream. The algorithm can do multiple
passes on the stream, but cannot access the entire stream. Secondly, the working memory
is considerably smaller than the size of the entire input stream. For graph algorithms, a
semi-streaming model allows the size of the working memory to be Õ(n).

The DFS tree can be trivially computed using O(n) passes over the input graph in
the semi-streaming environment, each pass adding one vertex to the DFS tree. However,
computing the DFS tree in even Õ(1) passes is considered hard [FHLT15]. To the best
of our knowledge, it remains an open problem to compute the DFS tree using even o(n)
passes in any relaxed streaming environment [O’C09, Ruh03]. Now, some of the direct
applications of a DFS tree in undirected graphs are answering connectivity, biconnectivity
and 2-edge connectivity queries. All these problems are addressed efficiently in the semi-
streaming environment using a single pass by the classical work of Westbrook and Tarjan
[WT92]. On the other hand, for the applications of a DFS tree in directed graphs as strong
connectivity, strong lower bounds of space for single-pass semi-streaming algorithms have
been shown . Borradaile et al. [BMM14] showed that any algorithm requires a a working
memory of Ω(εm) to answer queries of strong connectivity, acyclicity or reachability from
a vertex require with probability greater than (1 + ε)/2.

We now propose a semi-streaming algorithm for maintaining Incremental DFS for
random graphs. The key idea to limit the storage space required by this algorithm is to
just discard those edges from the stream whose at least one endpoint is on the stick of the
DFS tree. As described earlier, this part of DFS tree corresponding to the stick will never
be modified by the insertion of any edge. If both the endpoints of the edge lie in bristles,
we update the DFS tree using ADFS/SDFS2. Lemma 5.5.2 implies that the expected
number of edges stored will be O(n log n). In case we use SDFS2 (for directed graphs) we
also delete the non-tree edges incident on the stick. Hence, we have the following theorem.

Theorem 5.4. Given a random graph G(n,m), there exists a single pass semi-streaming
algorithm for maintaining the DFS tree incrementally, that requires O(n log n) space.
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Further, for random graphs even strong connectivity can be solved using a single pass
in the streaming environment by SDFS2 as follows. Now, SDFS2 keeps only the tree edges
and the edges in the bristles. For answering strong connectivity queries, we additionally
store the highest edge from each vertex on the stick. The strongly connected components
can thus be found by a single traversal on the DFS tree [Tar72]. Thus, our semi-streaming
algorithm SDFS2 not only gives a solution for strong connectivity in the streaming setting
but also establishes the difference in its hardness for general graphs and random graphs.
To the best of our knowledge no such result was known for any graph problem in streaming
environment prior to our work. Thus, we have the following theorem.

Theorem 5.5. Given a random graph G(n,m), there exists a single pass semi-streaming
algorithm for maintaining a data structure that answers strong connectivity queries in G
incrementally, requiring O(n log n) space.

5.7 Incremental DFS on real graphs

We now evaluate the performance of existing and proposed algorithms on real graphs.
Recall that for random graphs, bristles represent the entire DFS tree until the insertion of
Θ(n log n) edges. This forces SDFS2 to rebuild the whole tree requiring total Ω(n2) time
even for sparse random graphs, whereas ADFS and FDFS only partially rebuild the DFS
tree and turn out to be much better for sparse random graphs (see Figure 5.7 (b), 5.8 (b)
and 5.9 (b)). Now, most graphs that exist in real world are known to be sparse [Mel06].
Here again, both ADFS and FDFS perform much better as compared to SDFS2 and other
existing algorithms. Thus, we propose another simple variant of SDFS (SDFS3), which
is both easy to implement and performs very well even on real graphs (much better than
SDFS2).

5.7.1 Proposed algorithms for real graphs (SDFS3)

The primary reason behind the superior performance of ADFS and FDFS is the partial
rebuilding of the DFS tree upon insertion of an edge. However, the partial rebuilding by
SDFS2 is significant only when the broomstick has an appreciable size, which does not
happen until the very end in most of the real graphs. With this insight, we propose new
algorithms for directed and undirected graphs. The aim is to rebuild only that region of
the DFS tree which is affected by the edge insertion.

• Undirected Graphs
On insertion of a cross edge (x, y), ADFS rebuilds one of the two candidate subtrees
hanging from LCA(x, y) containing x or y. We propose algorithm SDFS3 that will
rebuild only the smaller subtree (less number of vertices) among the two candidate
subtrees (say x ∈ T1 and y ∈ T2). This heuristic is found to be extremely efficient
compared to rebuilding one of T1 or T2 arbitrarily. The smaller subtree, say T2, can
be identified efficiently by simultaneous traversal in both T1 and T2. and terminate
as soon as either one is completely traversed. This takes time of the order of |T2|.
We then mark the vertices of T2 as unvisited and start the traversal from y in T2,
hanging the newly created subtree from edge (x, y).
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• Directed Graphs
On insertion of an anti-cross edge (x, y), FDFS rebuilds the vertices reachable from
y in the subgraph induced by a candidate set of subtrees described in Section 5.2.
FDFS identifies this affected subgraph using the DFN number of the vertices. Thus,
this DFN number also needs to be updated separately after rebuilding the DFS
tree. This is done by building an additional data structure while the traversal is
performed, which aids in updating the DFN numbers efficiently. We propose SDFS3
to simply mark all the subtrees in this candidate set as unvisited and proceed the
traversal from (x, y). The traversal then continues from each unvisited root of the
subtrees marked earlier, implicitly restoring the DFN number of each vertex.

5.7.2 Experimental Setup

The algorithms are implemented in C++ using STL (standard template library), and built
with GNU g++ compiler (version 4.4.7) with optimization flag −O3. The correctness of
our code was exhaustively verified on random inputs by ensuring the absence of anti-cross
edges (or cross edge) in directed (or undirected) graphs. Our experiments were run on
Intel Xeon E5-2670V 2.5 GHz 2 CPU-IvyBridge (20-cores per node) on HP-Proliant-SL-
230s-Gen8 servers with 1333 MHz DDR3 RAM of size 768 GB per node. Each experiment
was performed using a single dedicated processor.

5.7.3 Datasets used for evaluation on Real Graphs

We consider the following types of graphs in our experiments:

• Internet topology: These datasets represent snapshots of network topology on
CAIDA project (asCaida [LKF05, LK14]), Oregon Route Views Project’s Autonomous
Systems (ass733 [LKF05, LK14]) and Internet autonomous systems (intTop [ZLMZ05,
Kun16]).

• Collaboration networks: These datasets represent the collaboration networks as
recorded on arXiv’s High-Energy-Physics groups of Phenomenology (arxvPh [LKF07,
DH14, Kun16]) and Theory (arxvTh [LKF07, DH14, Kun16]), and on DBLP (dblp
[Ley02, DH14, Kun16]).

• Online communication: These datasets represent communication of linux ker-
nel messages (lnKMsg [Kun16]), Gnutella peer-to-peer file sharing network (gnutella
[RIF02, LK14]), Slashdot’s message exchange (slashDt [GKL08, Kun16]), Facebook’s
wall posts (fbWall [VMCG09, Kun16]), Democratic National Committee’s (DNC)
email correspondence (dncCoR [Kun16]), Enron email exchange (enron [KY04, Kun16]),
Digg’s reply correspondence (digg [CSJS09, Kun16]) and UC Irvine message ex-
change (ucIrv [OP09, Kun16])

• Friendship networks: These datasets represent the friendship networks of Flickr
(flickr [MKG+08, Kun16], Digg (diggNw [HL12, Kun16]), Epinion (epinion [MA05,
Kun16]), Facebook (fbFrnd [VMCG09, Kun16]) and Youtube (youTb [Mis09, Kun16]).

• Other interactions: These datasets represent the other networks as Chess game
interactions (chess [Kun16]), user loans on Prosper (perLoan [Kun16]), hyperlink
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network of Wikipedia (wikiHy [Mis09, Kun16]), voting in elections on Wikipedia
(wikiEl [LHK10, Kun16]) and conflict resolution on Wikipedia (wikiC [BKLvR09,
Kun16]).

In some of these datasets there are some rare instances in which edges are deleted
(not present in new snapshot). Thus, in order to use these datasets for evaluation of
incremental algorithms we ignore the deletion of these edges (and hence reinsertion of
deleted edges). Moreover, in several datasets the edges are inserted in form of batches
(having same insertion time), where the number of batches are significantly lesser than
the number of inserted edges. Almost all the algorithms (except FDFS and SDFS3) can
be tweaked to handle such batch insertions more efficiently, updating the DFS tree once
after insertion of an entire batch, instead of treating every edge insertion individually.

Dataset n m|m∗ m
n
| m
m∗ ADFS1 ADFS2 SDFS3 SDFS2 SDFS WDFS

ass733 7.72K 21.47K 2.78 1.00 1.88 34.12 639.50 1.13K 2.99K

721.00 29.77 1.00 2.71 38.43 35.57 54.14 95.43

intTop 34.76K 107.72K 3.10 1.00 2.14 111.32 3.78K 8.15K 14.65K

18.27K 5.89 1.00 6.07 99.47 320.49 1.83K 2.24K

fbFrnd 63.73K 817.03K 12.82 1.00 2.18 146.58 2.02K 14.67K 11.75K

333.92K 2.45 1.00 8.10 141.07 491.24 7.63K 4.27K

wikiC 116.84K 2.03M 17.36 1.00 1.82 249.45 3.09K >22.56K >22.56K

205.59K 9.86 1.00 2.26 246.49 2.69K 4.39K 3.35K

arxvTh 22.91K 2.44M 106.72 1.00 1.81 28.31 3.41K >39.96K 9.72K

210.00 11.64K 1.00 6.74 32.01 8.63 13.24 2.84K

arxvPh 28.09K 3.15M 112.07 1.00 2.38 57.94 2.54K >36.29K 11.32K

2.26K 1.39K 1.00 8.25 70.75 103.23 192.22 3.17K

dblp 1.28M 3.32M 2.59 1.00 1.60 >22.07K >22.07K >22.07K >22.07K

1.72M 1.93 1.00 1.84 >21.26K >21.26K >21.26K >21.26K

youTb 3.22M 9.38M 2.91 1.00 3.53 >347.00 >347.00 >347.00 >347.00

203.00 46.18K 1.26 2.26 >322.18 1.00 1.00 260.73

Table 5.2: Comparison of time taken by different algorithms, relative to the fastest (shown in bold),
for maintaining incremental DFS on real undirected graphs. See Table 5.4 for corresponding table
comparing the exact performance of different algorithms.

5.7.4 Evaluation

The comparison of the performance of the existing and the proposed algorithms for real
undirected graphs and real directed graphs is shown in Table 5.2 and Table 5.3 respectively.
To highlight the relative performance of different algorithms, we present the time taken
by them relative to that of the fastest algorithm (see Section 5.10 for the exact time and
memory used by different algorithms). In case the time exceeded 100hrs the process was
terminated, and we show the relative time in the table with a ’>’ sign and the ratio
corresponding to 100hrs. For each dataset, the first row corresponds to the experiments
in which the inserted edges are processed one by one, and the second row corresponds
to the experiments in which the inserted edges are processed in batches (m∗ denotes the
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Dataset n m|m∗ m
n | mm∗ FDFS SDFS3 SDFS2 SDFS

dncCoR 1.89K 5.52K 2.92 1.55 1.00 2.27 9.86

4.01K 1.38 1.55 1.00 2.00 7.18

ucIrv 1.90K 20.30K 10.69 1.69 1.00 2.25 21.81

20.12K 1.01 1.78 1.00 2.35 22.14

chess 7.30K 60.05K 8.22 1.94 1.00 2.54 20.00

100.00 600.46 52.04 26.14 1.00 1.00

diggNw 30.40K 85.25K 2.80 1.00 1.33 3.60 14.50

81.77K 1.04 1.00 1.38 3.78 11.96

asCaida 31.30K 97.84K 3.13 1.00 4.31 13.60 64.71

122.00 801.98 12.57 42.62 1.01 1.00

wikiEl 7.12K 103.62K 14.55 1.01 1.00 2.58 51.80

97.98K 1.06 1.00 1.00 2.53 52.38

slashDt 51.08K 130.37K 2.55 1.03 1.00 2.78 5.85

84.33K 1.55 1.04 1.00 2.07 3.79

lnKMsg 27.93K 237.13K 8.49 1.82 1.00 2.40 23.24

217.99K 1.09 1.77 1.00 2.30 23.13

fbWall 46.95K 264.00K 5.62 1.29 1.00 2.49 14.84

263.12K 1.00 1.31 1.00 2.73 17.11

enron 87.27K 320.15K 3.67 1.00 1.55 5.66 67.58

73.87K 4.33 1.00 1.48 2.61 14.00

gnutella 62.59K 501.75K 8.02 1.23 1.00 2.54 19.13

9.00 55.75K 1.17K 1.04K 1.03 1.00

epinion 131.83K 840.80K 6.38 1.32 1.00 2.29 17.77

939.00 895.42 95.27 93.62 1.00 1.00

digg 279.63K 1.73M 6.19 1.00 1.18 3.96 >29.28

1.64M 1.05 1.00 1.34 4.08 >30.92

perLoan 89.27K 3.33M 37.31 1.00 7.10 30.70 >639.03

1.26K 2.65K 2.13 13.18 1.00 1.01

flickr 2.30M 33.14M 14.39 - - - -

134.00 247.31K >476.50 >476.50 1.01 1.00

wikiHy 1.87M 39.95M 21.36 - - - -

2.20K 18.18K >69.26 >69.26 1.00 1.13

Table 5.3: Comparison of time taken by different algorithms, relative to the fastest (shown in
bold), for maintaining incremental DFS on real directed graphs. If all algorithms exceed 100hrs
giving no fastest algorithm, their corresponding relative time is not shown (-). See Table 5.5 for
corresponding table comparing the exact performance of different algorithms.

corresponding number of batches). The density of a graph can be judged by comparing
the average degree (m/n) with the number of vertices (n). Similarly, the batch density of
a graph can be judged by comparing the average size of a batch (m/m∗) with the number
of vertices (n).

For undirected graphs, Table 5.2 clearly shows that ADFS1 outperforms all the other
algorithms irrespective of whether the edges are processed one by one or in batches (ex-
cept youTb). Moreover, despite ADFS2 having better worst case bounds than ADFS1,
the overhead of maintaining its data structure D leads to inferior performance as com-
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pared to ADFS1. Also, SDFS2 significantly improves over SDFS (> 2 times). However,
by adding a simple heuristic, SDFS3 improves over SDFS2 by a huge margin (> 10 times)
which becomes even more significant when the graph is very dense (arxvTh and arxvPh).
Also, note that even SDFS3 performs a lot worse than ADFS (> 30 times) despite having
a profound improvement over SDFS2. Further, despite having good worst case bounds,
WDFS seems to be only of theoretical interest and performs worse than even SDFS in
general. However, if the graph is significantly dense (fbFrnd, wikiC, arxvTh and arxvPh),
WDFS performs better than SDFS but still far worse than SDFS2. Now, in case of batch
updates, SDFS3 is the only algorithm that is unable to exploit the insertion of edges in
batches. Hence, SDFS3 performs worse than SDFS2 and even SDFS if the batch density
is significantly high (arxvTh and youTb). Finally, if the batch density is extremely high
(youTb), the simplicity of SDFS and SDFS2 results in a much better performance than
even ADFS.

Observations: For real undirected graphs

• ADFS outperforms all other algorithms by a huge margin, with ADFS1 always per-
forming mildly better than ADFS2.

• SDFS2 mildly improves SDFS, whereas SDFS3 significantly improves SDFS2.

• WDFS performs even worse than SDFS for sparse graphs.

For directed graphs, Table 5.3 shows that both FDFS and SDFS3 perform almost
equally well (except perLoan) and outperform all other algorithms when the edges are
processed one by one. In general SDFS3 outperforms FDFS marginally when the graph is
dense (except slashDt and perLoan). The significance of SDFS3 is further highlighted by
the fact that it is much simpler to implement as compared to FDFS. Again, SDFS2 sig-
nificantly improves over SDFS (> 2 times). Further, by adding a simple heuristic, SDFS3
improves over SDFS2 (> 2 times), and this improvement becomes more pronounced when
the graph is very dense (perLoan). Now, in case of batch updates, both FDFS and SDFS3
are unable to exploit the insertion of edges in batches. Hence, they perform worse than
SDFS and SDFS2 for batch updates, if the average size of a batch is at least 600. SDFS and
SDFS2 perform almost equally well in such cases with SDFS performing marginally bet-
ter than SDFS2 when the batch density is significantly high (asCaida, gnutella and flickr).

Observations: For real directed graphs

• FDFS and SDFS3 outperform all other algorithms unless batch density is high, where
trivial SDFS is better.

• SDFS3 performs better than FDFS in dense graphs.

• SDFS2 mildly improves SDFS, and SDFS3 mildly improves SDFS2.

Overall, we propose the use of ADFS1 and SDFS3 for undirected and directed graphs
respectively. Although SDFS3 performs very well on real graphs, its worst case time com-
plexity is no better than that of SDFS on general graphs (see Section 5.8.2). Finally, in



113

case the batch density of the input graph is substantially high, we can simply use the
trivial SDFS algorithm.

Remark: The improvement of SDFS3 over SDFS2 is substantially better on undirected
graphs than on directed graphs. Even then ADFS1 outperforms SDFS3 by a huge margin.
Also, when the batch density is extremely high (youTb), ADFS1 performs only mildly
slower than the fastest algorithm (SDFS). These observations further highlight the signif-
icance of ADFS1 in practice.

5.8 Tightness of Worst case bounds

We now present worst case inputs to demonstrate the worst case bounds for the empirically
efficient algorithms, FDFS and SDFS3.

5.8.1 Worst Case Input for FDFS

We now describe a sequence of O(m) edge insertions in a directed acyclic graph for which
FDFS takes Θ(mn) time to maintain DFS tree. Consider a directed acyclic graph G =
(V,E) where the set of vertices V is divided into two sets A = {a1, a2, ..., an/2} and
B = {b1, b2, ..., bn/2}, each of size n/2. The vertices in both A and B are connected in the
form of a chain (see Figure 5.11 (a), which is the DFS tree of the graph). Additionally,
set of vertices in B are connected using m − n/2 edges (avoiding cycles), i.e. there can
exist edges between bi and bj , where i < j. For any n ≤ m ≤

(
n
2

)
, we can add Θ(m) edges

to B as described above. Now, we add n/2 more edges as described below.

(a) (b) (c)

sss
a1a1a1

a2a2a2

an/2an/2an/2

b1

b1b1

bn/2

bn/2bn/2

Figure 5.11: Example to demonstrate the tightness of analysis of FDFS. (a) Initial DFS tree of
the graph G. (b) Insertion of a cross edge (a1, b1). (c) The resultant DFS tree.

We first add the edge (a1, b1) as shown in Figure 5.11 (b). On addition of an edge
(x, y), FDFS processes all outgoing edges of the vertices having rank φ(x) < φ′ ≤ φ(y),
where φ is the post order numbering of the DFS tree. Clearly, the set of such vertices is
the set B. Hence, all the Θ(m) edges in B will be processed to form the final DFS tree as
shown in Figure 2.3 (c). We next add the edge (a2, b1) which will again lead to processing
of all edges in B, and so on. This process can be repeated n/2 times adding each (ai, b1),
for i = 1, 2, ..., n/2 iteratively. Thus, for n/2 edge insertions, FDFS processes Θ(m) edges
each, requiring a total of Θ(mn) time to maintain the DFS tree. Hence, overall time



114

required for insertion of m edges is Θ(mn), as FDFS has a worst case bound of O(mn).
Thus, we have the following theorem.

Theorem 5.6. For each value of n ≤ m ≤
(
n
2

)
, there exists a sequence of m edge insertions

for which FDFS requires Θ(mn) time to maintain the DFS tree.

5.8.2 Worst Case Input for SDFS3

We now describe a sequence of m edge insertions for which SDFS3 takes Θ(m2) time. Note
that since SDFS3 is necessarily an improvement over SDFS2 and hence even SDFS, the
worst case example would also serve for SDFS2 and SDFS. Consider a graph G = (V,E)
where the set of vertices V is divided into two sets V ′ and I, each of size Θ(n). The
vertices in V ′ are connected in the form of a three chains (see Figure 5.12 (a)) and the
vertices in I are isolated vertices. Thus, it is sufficient to describe only the maintenance
of DFS tree for the vertices in set V ′, as the vertices in I will exist as isolated vertices
connected to the dummy vertex s in the DFS tree (recall that s is the root of the DFS
tree).

We divide the sequence of edge insertions into k phases, where each phase is further
divided into k stages. At the beginning of each phase, we identify three chains having
vertex sets from the set V ′, namely A = {a1, ..., ak}, X = {x1, ..., xp} in the first chain, B =
{b1, ..., bl} and Y = {y1, ..., yq} in the second chain and C = {c1, ..., ck}, Z = {z1, ..., zr} in
the third chain as shown in Figure 5.12 (a). The constants k, p, q, r = Θ(

√
m) such that

q > r + k and p ≈ q + r + k. We then add eZ = Θ(m) edges to the set Z, ey = ez + k + 1
edges to Y and ex = ez + ey edges to X, which is overall still Θ(m). The size of A and C
is k in the first phase and decreases by 1 in each the subsequent phases. Figure 5.12 (a)
shows the DFS tree of the initial graph.

Now, the first stage of the phase starts with addition of the cross edge (b1, c1) as shown
in Figure 5.12 (b). Clearly, s is the LCA of the inserted edge and SDFS3 would rebuild
the smaller of the two subtrees T (b1) and T (c1). Since q > r, SDFS3 would hang T (c1)
through edge (b1, c1) and perform partial DFS on T (c1) requiring to process Θ(m) edges
in Z. This completes the first stage with the resultant DFS tree shown in the Figure 5.12
(c). This process continues for k stages, where in ith stage, T (c1) would initially hang
from bi−1 and (bi, c1) would be inserted. The DFS tree at the end of kth stage is shown
in Figure 5.12 (d). At the end of k stages, every vertex in B is connected to the vertex
c1, hence we remove it from C for the next phase. For this we first add the edge (a1, c1).
Since both T (b1) and T (a1) have approximately same number of vertices (as p ≈ q+r+k),
we add constant number of vertices (if required) to Z from I to ensure T (b1) is rebuilt.
The resultant DFS tree is shown in Figure 5.12 (e). Finally, we add (a2, c1). Again both
T (c1) and T (a2) have approximately same number of vertices, so we add constant number
of vertices from I to X ensuring T (a2) is rebuild as shown in Figure 5.12 (f). Note the
similarity between Figures 5.12 (a) and 5.12 (f). In the next phase, the only difference is
that A′ = {a2, ..., ak}, C ′ = {c2, ..., ck} and s′ = c1. In each phase one vertex each from A
and C are removed and constant number of vertices from I are removed. Hence the phase
can be repeated k times.

Thus, we have k phases each having k stages. Further, in each stage we add a single
cross edge forcing SDFS3 to process Θ(m) edges to rebuild the DFS tree. Thus, the total
number of edges added to the graph is k ∗ k = Θ(m) and the total time taken by ADFS1
is k ∗ k ∗Θ(m) = Θ(m2). Hence, we get the following theorem for any n ≤ m ≤

(
n
2

)
.
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Figure 5.12: Example to demonstrate the tightness of the SDFS3. (a) Beginning of a phase with
vertex sets A, B and X. (b) Phase begins with addition of two vertex sets C and D. The first
stage begins by inserting a back edge (a1, bk) and a cross edge (b1, ck). (c) The rerooted subtree
with the edges in A ×X and (bk, a1) as cross edges. (d) Final DFS tree after the first stage. (e)
Final DFS tree after first phase. (f) New vertex sets A′, B′ and X for the next phase.

Theorem 5.7. For each value of n ≤ m ≤
(
n
2

)
, there exists a sequence of m edge insertions

for which SDFS3 requires Θ(m2) time to maintain the DFS tree.

Remark: The worst case example mentioned above (say G1) would also work without
X,Y and Z. Consider a second example (say G2), where we take size of A = 2∗k+ 2,B =
k + 1 and C = k and the vertices of C have Θ(m) edges amongst each other. The same
sequence of edge insertions would also force SDFS3 to process Θ(m2) edges. However, G1

also ensures the same worst case bound for SDFS3 if it chooses the subtree with lesser
edges instead of the subtree with lesser vertices, which is an obvious workaround of the
example G2. The number of edges ex, ey and ez are chosen precisely to counter that
argument.

5.9 Time Plots for experiments

In this section we present the corresponding time plots for experiments performed earlier
which were measured in terms of number of edges processed. The comparison of the
existing incremental algorithms for random undirected graphs are shown in Figure 5.13
and Figure 5.14. The comparison of the existing and proposed algorithms for random
undirected graphs, random directed graphs and random DAGs are shown in Figure 5.15,
Figure 5.16 and Figure 5.17 respectively.
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Figure 5.13: Total time taken by existing algorithms for insertion of m =
(
n
2

)
edges for different

values of n. (a) Normal scale. (b) Logarithmic scale.

Figure 5.14: For n = 1000 and up to n
√
n edge insertions the plot shows (a) Total time taken, (b)

Time taken per edge insertion, by the existing algorithms.

Figure 5.15: Comparison of existing and proposed algorithms on undirected graphs: (a) Total time
taken for insertion of m =

(
n
2

)
edges for different values of n. (b) Time taken per edge insertion

for n = 1000 and up to n
√
n edge insertions.
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Figure 5.16: Comparison of existing and proposed algorithms on directed graphs: (a) Total time
taken for insertion of m =

(
n
2

)
edges for different values of n in logarithmic scale (b) Time taken

per edge insertion for n = 1000 and up to n
√
n edge insertions.

Figure 5.17: Comparison of existing and proposed algorithms on DAGs: (a) Total time taken for
insertion of m =

(
n
2

)
edges for different values of n in logarithmic scale (b) Time taken per edge

insertion for n = 1000 and up to n
√
n edge insertions.

5.10 Exact performance comparison for real graphs

The performance of different algorithms in terms of time and memory required on real
undirected graphs and real directed graphs is shown in Table 5.4 and Table 5.5 respectively.

5.11 Discussion

Our experimental study of existing algorithms for incremental DFS on random graphs pre-
sented some interesting inferences. Upon further investigation, we discovered an important
property of the structure of DFS tree in random graphs: the broomstick structure. We
then theoretically proved the variation in length of the stick of the DFS tree as the graph
density increases, which also exactly matched the experimental results. This led to several
interesting applications, including the design of an extremely simple algorithm SDFS2.
This algorithm theoretically matches and experimentally outperforms the state-of-the-art
algorithm in dense random graphs. It can also be used as a single pass semi-streaming
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algorithm for incremental DFS as well as strong connectivity in random graphs, which
also establishes the difference in hardness of strong connectivity in general graphs and
random graphs. Finally, for real world graphs, which are usually sparse, we propose a
new simple algorithm SDFS3 which performs much better than SDFS2. Despite being
extremely simple, it almost always matches the performance of FDFS in directed graphs.
However, for undirected graphs ADFS was found to outperform all algorithms (including
SDFS3) by a huge margin motivating its use in practice.

For future research directions, recall that ADFS (see Inference I2) performs extremely
well even on sparse random graphs. Similarly, the performance of FDFS and SDFS3 is also
very good even on sparse random graphs. However, none of these have asymptotic bounds
any better than Õ(n2). After preliminary investigation, we believe that the asymptotic
bounds for ADFS and FDFS (in DAGs) should be O(m+ npolylogn) for random graphs.
Also, we believe that the asymptotic bounds for SDFS3 and FDFS (in directed graphs)
should be O(m + n4/3polylogn) for random graphs. It would be interesting to see if it is
possible to prove these bounds theoretically.
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Chapter 6

Conclusion

Prior to our work, the only known algorithms for maintaining dynamic DFS were for
directed acyclic graphs in the partially dynamic settings. In this thesis, we successfully
addressed the problem of maintaining dynamic DFS for undirected graphs from several
directions. Our results range from theoretical to experimental, sequential to parallel/
distributed/ streaming, and results having near optimal amortized to significant worst case
guarantees. As a result, we now have a much better understanding about the problem in
the undirected graphs. However, the problem of dynamic DFS is still wide open in various
directions described as follows.

Open Questions for Dynamic DFS

Despite significant improvement of our understanding of dynamic DFS in undirected
graphs, still nothing significant is known about dynamic DFS in general directed graphs.
Even for any partially dynamic setting, no algorithm is known to achieve even o(m) amor-
tized bound per update, i.e., no better than recomputing the DFS tree from scratch after
every update. Hence, the problem of maintaining dynamic DFS in general directed graphs
is of prime significance with several applications to other dynamic graph problems. If dy-
namic DFS is inherently difficult for directed graphs, then even establishing non-trivial
lower bounds for the same would be interesting.

The second crucial problem is to achieve better results for sparse graphs. Given the
lower bound of Ω(n) per update for dynamic DFS (see Chapter 3), the existing results
for dynamic DFS are no better than recomputing the DFS tree from scratch after every
update when m = O(n). A popular class of such sparse graphs are planar graphs, which
have several interesting properties. Thus, breaking the barrier of O(n) for maintaining a
DFS tree for planar graphs or other special graphs that are sparse in any dynamic setting
is another interesting problem worth exploring.

Open Questions on Dynamic DFS in other models

Our algorithm for maintaining dynamic DFS in distributed setting (see Chapter 4) uses a
restricted CONGEST (n/D) model of distributed computing with large message size and
greater number of messages passed. Extending this solution to more standard CONGEST
or LOCAL models would truly solve the problem in the distributed setting. Moreover,
even our parallel algorithms lack optimality of the total work done. Despite being time
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optimal (up to Õ(1) factors), our fully dynamic parallel algorithm performs Õ(m) work
per update which is equivalent to recomputing it from scratch. Hence, any non-trivial
parallel algorithm with better bounds for work done per update would be interesting.

Finally, several graph problems have been significantly studied in these models in the
static setting, whose dynamic versions are only studied in the sequential model. Thus,
efficient dynamic algorithms for such problems in other models of computation would also
be interesting having significant impact in practical applications.

Open questions on empirical analysis of dynamic DFS

Our experimental evaluation of incremental DFS algorithms had both empirical as well as
matching theoretical results when dealing with random graphs. However, for real graphs
our evaluation was restricted to the empirical analysis. Several properties of real graphs
have been found to closely relate to the properties of Power Law Graphs [AB02]. Recently,
some interesting theoretical studies on power law graphs [BCLS16] have shown close re-
semblance to the performance of algorithms on real graphs. Hence, a theoretical study of
incremental DFS algorithms on power law graphs would give us a better understanding
of the inferences derived from our experimental analysis on real world graphs.

Our experimental work (Chapter 5) have also opened up several promising problems
which require an introspection from the empirical perspective. Subgraph connectivity is
one such widely studied problem [Cha06, Dua10, CPR11], which can also be directly solved
using our fully dynamic DFS algorithm (Chapter 3). Despite its practical significance,
the existing results for the problem are substantially complex which may not have good
empirical performance.



Appendix A

General Notations

Unless mentioned otherwise, we consider an undirected graph G = (V,E) on n = |V |
vertices and m = |E| edges. The following notations are commonly used in the thesis
report.

• T : A DFS tree of G at any time during the algorithm.

• par(v) : Parent of v in the updated DFS tree.

• path(u, v) : Path between u and v in T .

• T (x) : The subtree of T rooted at a vertex x.

• root(T ′) : Root of a subtree T ′ of T , i.e., root
(
T (x)

)
= x.

• LCA(u, v) : The Lowest Common Ancestor of u and v in tree T .

• T ∗ : The DFS tree computed by our algorithm for the updated graph.

• Õ() : Hides the poly-logarithmic factors, i.e., O(Xpoly log n) = Õ(X).

A subtree T ′ is said to be hanging from a path p if the root r′ of T ′ is a child of some
vertex on the path p and r′ does not belong to the path p. Unless stated otherwise, every
reference to a path refers to an ancestor-descendant path defined as follows:

Definition A.1 (Ancestor-descendant path). A path p in a DFS tree T is said to be
ancestor-descendant path if its endpoints have ancestor-descendant relationship in T .

If the graph is not connected, we need to maintain a DFS tree for each connected
component. However, our algorithm, at each stage, maintains a single DFS tree which
stores the entire forest of these DFS trees as follows. We add a dummy vertex s (pseudo
root) to the graph in the beginning and connect it to all the vertices. We maintain a DFS
tree of this augmented graph rooted at s. It can be easily seen that the subtrees rooted at
the children of s correspond to DFS trees of various connected components of the original
graph.
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